

Slovakia

Roadmap for lignocellulosic biomass and relevant policies for a bio-based economy in 2030

Calliope Panoutsou & Asha Singh

c.panoutsou@imperial.ac.uk

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°608622. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein

What types of lignocellulosic biomass are included in the analysis?

Lignocellulosic biomass in this analysis includes:

- Forest biomass from primary forestry productions (fellings), primary field residues and secondary forest industry residues;
- Agricultural biomass from primary field activities;
- Biowastes and post consumer wood;
- Dedicated perennial crops.

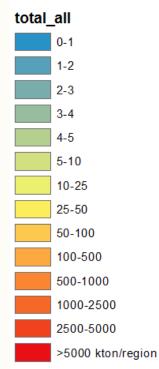
Context

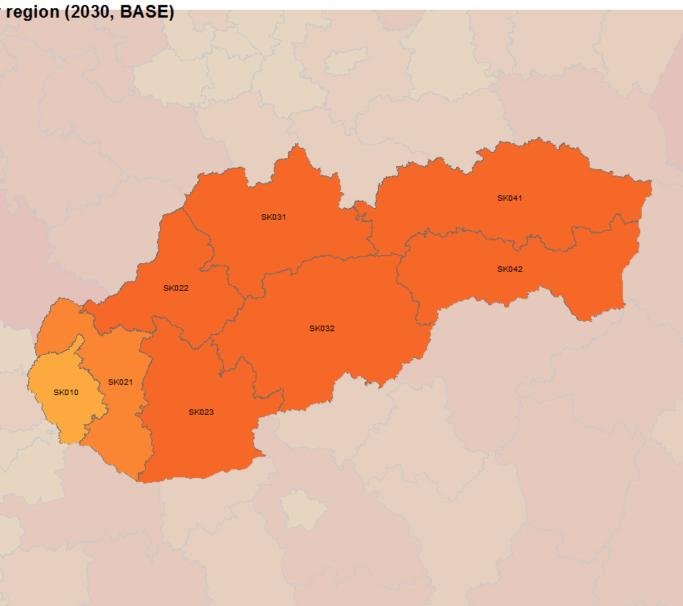
The roadmap provides scientific evidence for policy, industry and regional stakeholders for the following issues:

- domestic, sustainable lignocellulosic biomass feedstock potentials at national/regional/local levels;
- resource and energy efficient value chains which are expected to be implemented at scale by 2030;
- Sustainability Risks;
- Key indicators per value chain;
- Policies that can facilitate uptake of indigenous lignocellulosic biomass;
- Recommended roadmap actions based on current good practices.

Key questions, addressed by S2Biom

- Where is biomass found?
- What is estimated sustainable potential by 2030?
- What are the sustainable potentials by biomass type and where can they be found?
- How do feedstocks perform in terms of sustainability risks?
- Which value chains have high resource and energy efficiency?
- What is the national policy landscape?
- What future policy interventions can be considered based on good practice?

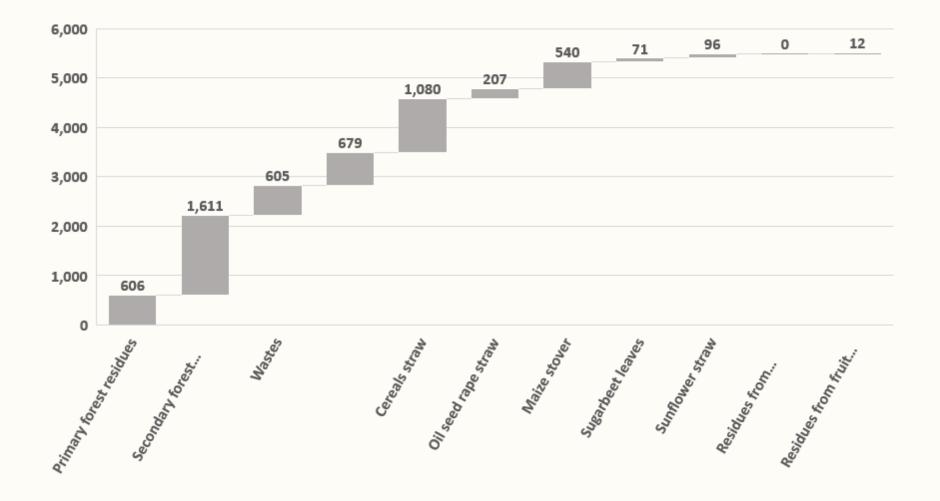

Where is biomass found?


 The following slide presents a map with total sustainable* occurrence of lignocellulosic biomass by region, measured in '000 dry tonnes per year

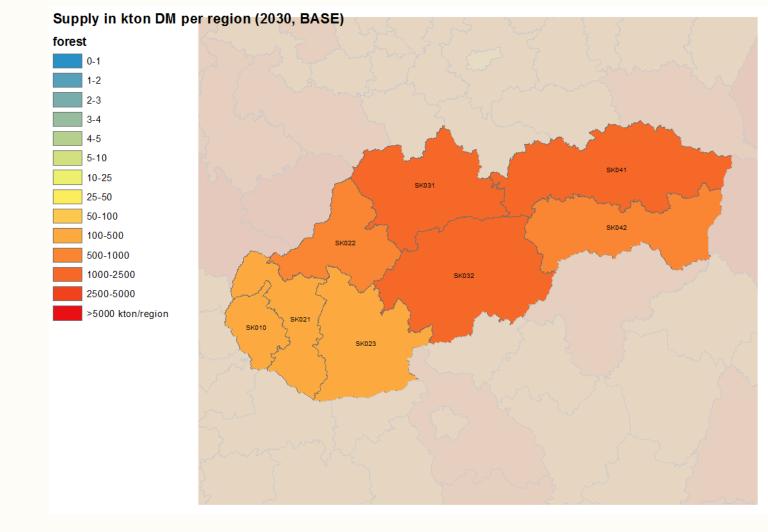
* The estimated potentials include sustainability criteria as required by the Renewable Energy Directive.

Total lignocelullosic biomass by region

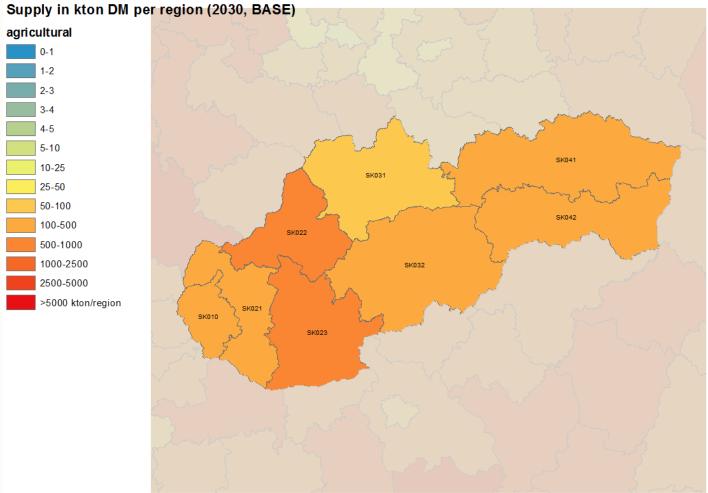
Supply in kton DM per region (2030, BASE)



What is the availability per biomass type?

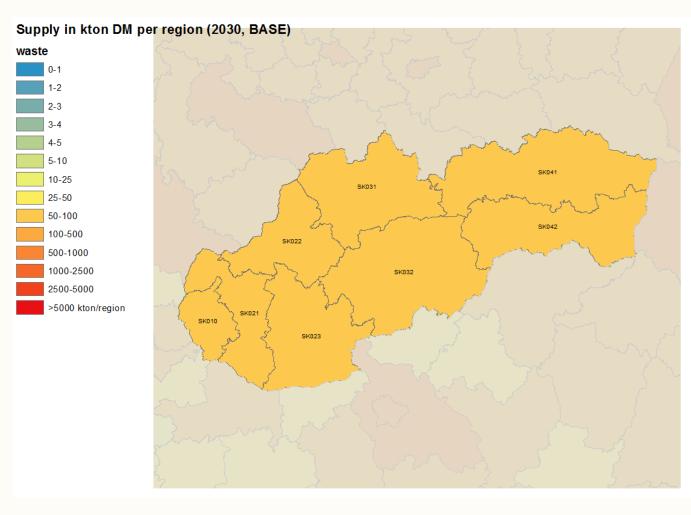

- Sustainable potential from residues, dedicated perennial crops, biowastes and post consumer wood totals 5.5m dry tonnes / year.
- Primary forestry production accounts for an additional 4.3m dry tonnes / year.
- The following slide presents a graph of potential available lignocellulosic biomass by source, excluding primary forestry production.

Lignocellulosic biomass availability by source by 2030 ('000 dry tonnes)

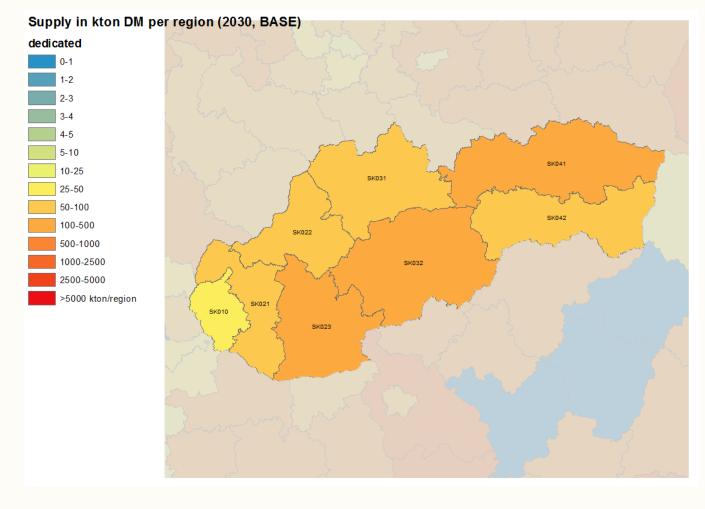

What are the sustainable potentials by biomass type and where can they be found?

- The following slides present maps of estimated sustainable potential lignocellulosic biomass by region and by main source, namely:
 - Forest (primary forestry production, field residues and secondary forest residues)
 - Agriculture (primary field residues and tree prunings)
 - Biowastes and post consumer wood
 - Dedicated perennial crops

Forest


Estimated sustainable potential can reach up to 6.5m dry tonnes/ year

Agriculture


Estimated sustainable potential can reach up to 2m dry tonnes/ year

Estimated sustainable potential can reach up to 0.6m dry tonnes/ year

Dedicated perennial crops

Estimated sustainable potential can reach up to 0.7m dry tonnes/ year

How do feedstocks perform in terms of sustainability risks?

Feedstock		Sustainability risks (high- red; moderate- yellow; low- green)					
		Land use (iLUC risk)	Biodiversity	Soil & Carbon stock	Water		
	Stemwood from thinnings &						
Primary forestry production							
	Stem and crown biomass from		Loss of dead wood and stumps may	Increased risk of soil erosion;			
Primary forestry production			negatively influence species diversity	risk to loose soil organic carbon;			
	Logging residues from final		and soil fauna. Contrary to this, leaving	risk to loose nutrients and risk of			
rimary forestry residues	fellings		them all on the ground may result in	reduced soil fertility and soil	No effect on the quantity; If no removal lea		
			,	structure when overharvesting	to increased fertilisation the leaching on N		
Primary forestry residues	Stumps from final fellings	None	and negative impacts on vegetation	forest residues	water may increase.		
econdary residues from	Cour mill residues						
vood industries	Saw mill residues			There are debates that using the			
Secondary residues from	Other wood processing			wood in panel boards, creates a carbon stock in comparison to			
wood industries	industry residues	None	None	combustion of the wood	None		
		None	None		None		
				Moderate risk to loose soil			
Agricultural residues	Straw/stubbles			organic carbon when			
			Biodiversity loss when harvesting too	overharvesting crop residues;			
	Woody prunning & orchards		many crop residues. This may also have	risk to loose nutrients when			
Agricultural residues	residues	None	adverse effect on soil biodiversity	overharvesting	None		
Secondary residues of	By-products and residues from						
ndustry utilising	food and fruit processing						
agricultural products	industry	None	None	None	None		
				Positive in regions			
				where it avoids			
				landfill; Digested			
				organic waste is a			
			Positive in regions	source of soil			
Biodegradable municipal			where it avoids	improving	Lower risk of water pollution in regions		
waste	Biodegradable waste	None	landfill	material.	where it avoids landfill		
	Hazardous post consumer						
Post consumer wood	wood		Positive in regions	Positive in regions			
	Non hazardous post consumer		where it avoids	where it avoids	Lower risk of water pollution in regions		
Post consumer wood	wood	None	landfill	landfill	where it avoids landfill		
				Potential use of			
			Can provide winter shelter;	marginal lands,	In arid circumstances ground water		
			birds nesting inside plants;	which can increase soil	abstraction and depletion possible because of deep roots; Some use of fertilise		
		Utalian land, and so also also also the					
		Higher land productivity	may, however, destroy sensitive	quality and soil carbon stock;			
		when marginal lands	habitats (e.g. Steppic habitats,	Can damage soil	/ pesticides which can		
Perennial lignocellulosic	Miscanthus, switchgrass, giant	when marginal lands used; in case of agricultural					

How do feedstocks perform in terms of sustainability risks?

Feedstock		Sustainability risks (high- red; moderate- yellow; low- green)						
		Land use (iLUC risk)	Biodiversity	Soil & Carbon stock	Water			
	Stemwood from							
Primary forestry	thinnings & final							
production	fellings							
	Stem and crown							
Primary forestry	biomass from early							
production	thinnings							
Primary forestry	Logging residues							
residues	from final fellings							
Primary forestry	Stumps from final							
residues	fellings							
Secondary residues								
from wood industries	Saw mill residues							
	Other wood							
Secondary residues	processing industry							
from wood industries	residues							
Agricultural residues	Straw/stubbles							
	Woody prunning &							
Agricultural residues	orchards residues							
	By-products and							
Secondary residues	residues from food							
of industry utilising	and fruit processing							
agricultural products	industry							
Biodegradable								
municipal waste	Biodegradable waste							
	Hazardous post							
Post consumer wood	consumer wood							
	Non hazardous post							
Post consumer wood	consumer wood							
	Miscanthus,							
Perennial	switchgrass, giant							
lignocellulosic crops	reed, willow, poplar							

Which value chains have high resource and energy efficiency?

- The following show value chains with relatively high efficiency in the following aspects:
 - Energy efficiency
 - Greenhouse gas emissions
 - Air quality
 - Technological maturity

Value chains: forest and agriculture

	Energy efficiency	ergy efficiency Greenhouse gases		Technological maturity
	Combustion at small scale inclue			
Strength	High conversion efficiency with modern technology	Low fossil input in the value chain	-	Fully commercial, long experience
Weakness	Older stoves have low conversion efficiency. Heat not always efficiently used.	-	High emissions from older wood stoves.	-
	Combustion at small-medium so	cale including buildings		
Strength	High conversion efficiency	Low fossil input in the chain	-	Fully commercial, long experience
Weakness	-	-	Emissions better than smaller scale but higher than natural gas.	-
	Combustion at medium scale, h	eat led		
Strength	High conversion efficiency	Low input of fossil fuels; high GHG savings especially for Combined Heat and Power	Better control options for emissions	Fully commercial
Weakness	-	-	Higher emissions than natural gas combustion.	-
	Biochemical - lignocell. hydrolys	sis and fermentation		
Strength	-	High GHG savings in case of process integration and limited fossil input.	Ethanol has low emissions as transport fuel.	-
Weakness	Around 50% conversion efficiency	-	-	Pre-commercial phase

Value chains: wastes

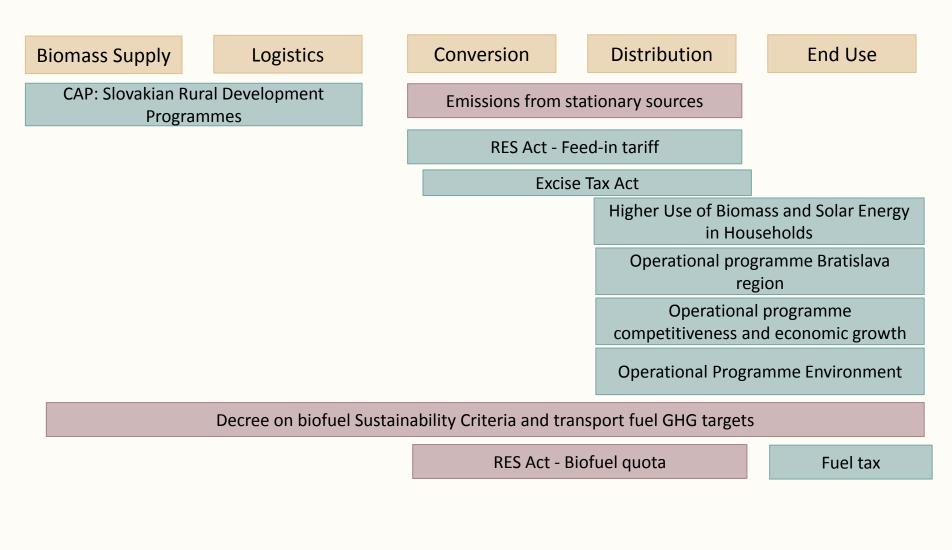
	Energy efficiency	Greenhouse gases	Air quality	Technological maturity				
	Waste incineration and energy recovery							
Strength	Adding energy recovery to waste management improves its pathway; high efficiency if CHP	High GHG benefit, particularly compared to landfill (avoided methane emissions); energy recovery substitutes fossil fuels	lf landfill is avoided, lower air emissions.	Fully commercial				
Weakness Relatively low net energy output; auxiliary fuel may be required due to low calorific value of fuel		-	Issues in terms of emissions of waste incineration. Emission control is circa one third of project cost.	-				
	Combustion at medium scale, he							
Strength	>85% conversion efficiency in case of heat only; 65-85% efficiency for CHP installations.	Low input of fossil fuels; especially in case of CHP GHG savings can be high	Better control options for PM emissions compared to small scale installations.	Fully commercial				
Weakness	Veakness		Still higher PM emissions than natural gas combustion.	-				
	Gasification & CHP at medium scale - heat driven							
Strength	Up to 80% conversion efficiency, depending on heat only or CHP installations.	Low/no input of fossil fuels; especially in case of CHP GHG savings can be high	Low emissions of gas engine or turbine	(Early) commercial				

Key indicators per value chain

			Cumulative energy demand	Non-renewable energy requirement (GJ non- renewable inputs/GJ	(€ outputs- € inputs (excl.biomass), per dry tonne of biomass input at plant gate)	GHG reduction, compared to reference	energy carriers (€/GJ	Jobs in FTE along
	Households	Residential wood chips boilers - small scale (10-25 kW)	1.39 GJ/GJ	0.044 GJ/GJ	188 €/ton d.m.	92%	17 €/GJ	3 FTE/ MWth
S	Services	Wood chip boilers-large size (50 kW)	1.24 GJ/GJ	0.039 GJ/GJ	211 €/ton d.m.	93%	13 €/GJ	3.5 FTE/ MWth
iomas		CHP using solid biomass > 15MW	2.79 GJ/GJ	0.088 GJ/GJ	198 €/ton d.m.	93%	30 €/GJ	3.8 FTE/ MWth
Forest biomass	Industry	CHP using solid biomass 0.5 - 15 MW	1.31 GJ/GJ	0.042 GJ/GJ	280 €/ton d.m.	95%	19 €/GJ	3.5 FTE/ MWth
So	HOUSANOIDS SATVICAS	Straw and agricultural residues for small scale local heating plants	1.39 GJ/GJ	0.089 GJ/GJ	170 €/ton d.m.	88%	18 €/MJ	3 FTE/ MWth
Agricultural biomass	Industry	Straw and agricultural residues for CHP > 10 MW	1.31 GJ/GJ	0.084 GJ/GJ	253 €/ton d.m.	92%	20 €/GJ	3.8 FTE/ MWth
ultura	Utility	Direct co-firing coal process	1.21 GJ/GJ	0.030 GJ/GJ	253 €/ton d.m.	96%	20 €/GJ	3.5 FTE/ MWth
Agric	Bioethanol 2 nd	Cellulose-EtOH	2.44 GJ/GJ		144 €/ton d.m.		· · · · ·	3.5 FTE/ MWth
tes		anaerobic digestion & medium scale CHP	2.00 GJ/GJ	0.007 GJ/GJ	197 €/ton d.m.	88%	28 €/GJ	2 FTE/ MWth
Biowastes	Transport	anaerobic digestion + upgrading to methane	1.56 GJ/GJ	0.071 GJ/GJ	122 €/ton d.m.	81%	14 €/GJ	2.5 FTE/ MWth

What is the national policy landscape?

- The following slides provide diagrams to illustrate how existing policies / measures support one or more of the following:
 - Biomass supply
 - Logistics
 - Conversion
 - Distribution
 - End use
- Policies / measures are categorised as: (1) Regulation, (2)
 Financing and (3) Information

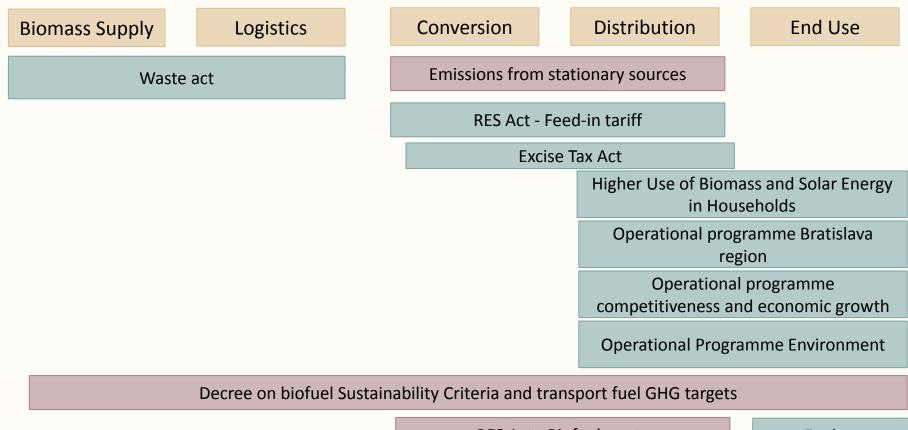

* Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

Current policy: forest

Biomass Supply	Logistics	Conversion		Distribution	End Use
Forestry Act		Emissions from stationary sources			
Act on protection of nature and landscape		RES Act - Feed-in tariff		d-in tariff	
Agricultural soils - cultivation of fast		Excise Tax Act			
growing trees				-	nass and Solar Energy useholds
				Operational pro	gramme Bratislava
				re	egion
				Operation	al programme
				competitiveness a	and economic growth
				Operational Prog	ramme Environment

Information

Current policy: agriculture & dedicated crops



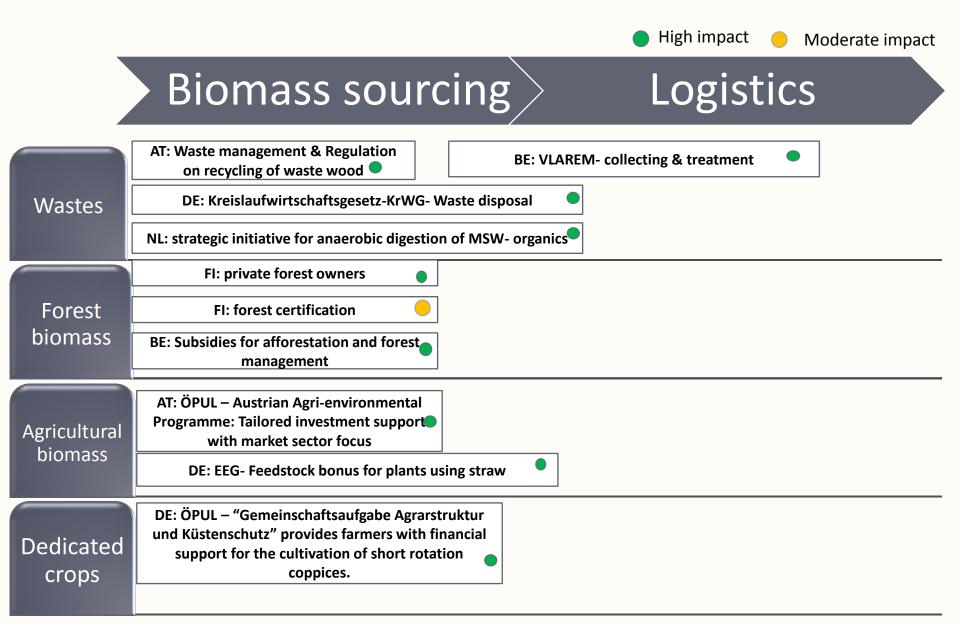
Regulations

Information

Current policy: wastes

Financing

RES Act - Biofuel quota

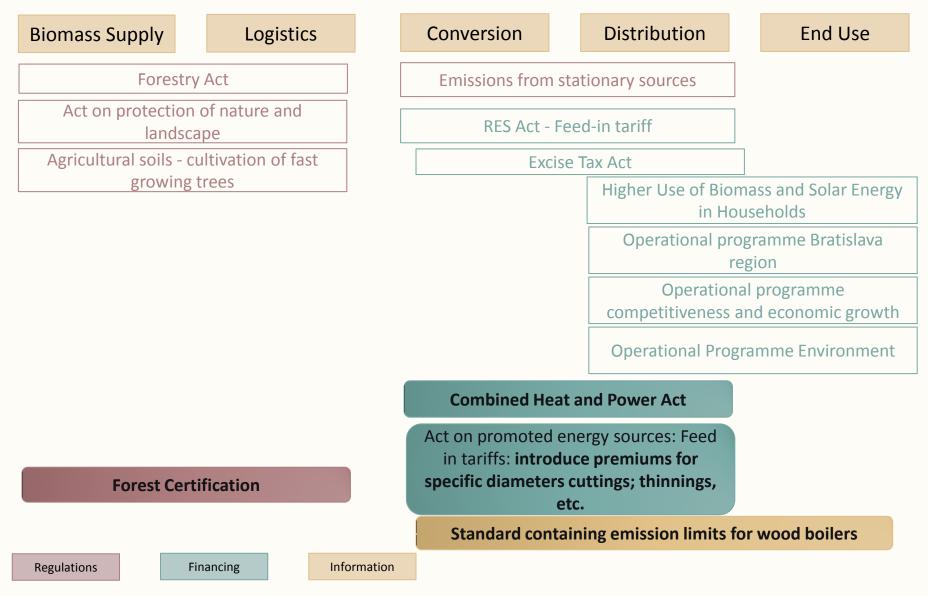

Fuel tax

What improvements can be made based on good practice?

- The following slides illustrate selected policies from Member States that have had significant positive impact in promoting the use of lignocellulosic biomass
- Based on this Good Practice, recommended new policies are shown (shaded boxes) to complement existing policies

* Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

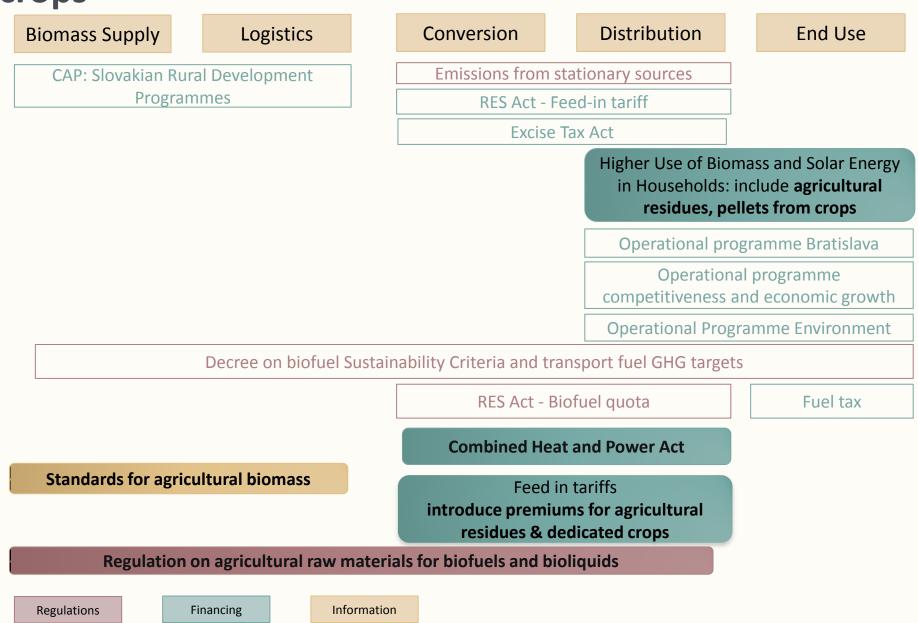
Good Practice- Feedstocks

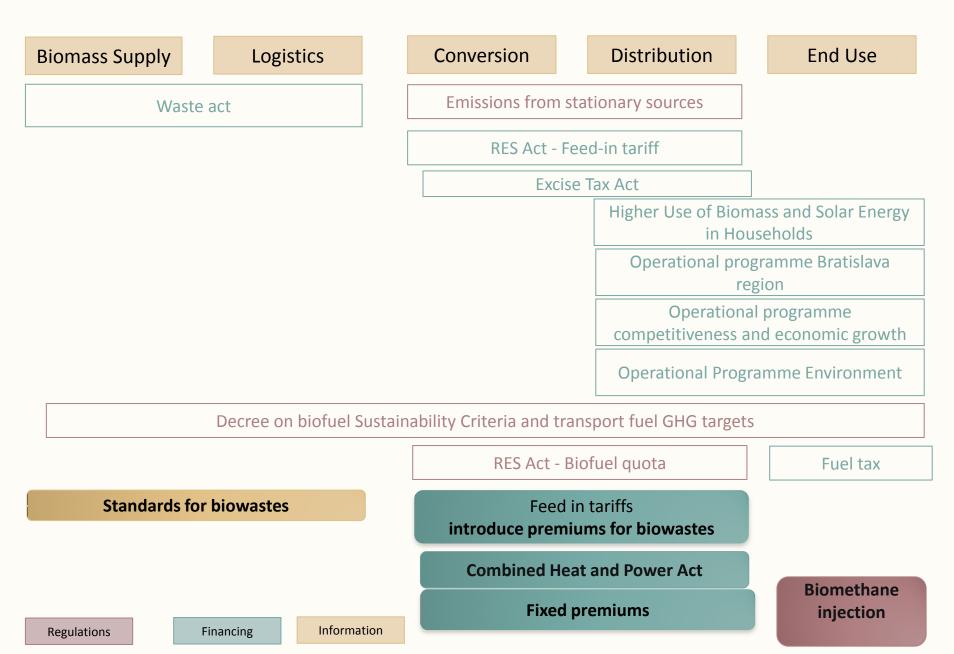

Good Practice- End use sectors

	Conversion	Distributior		End Use			
	UK: Renewable Heat Initiatives (RHI) ●	AT: Climate and En	ergy Fund-Subs	idy scheme wood heating. 💊			
		NL: Energy Investmen	t Allowance (El	A), tax reductions for boilers ●			
Heat	[ES: BIOMCASA I &	II, funding for	efficient use of biomass			
	DE: repayment bonus from market prog	ram (MAP) and soft loans v	vith low interes	t rates public sector bank KfW ●			
	AT: Green Electricity Act & CHP Act: refines	scales of applications and types and end uses.	target specific s	ectors and biomass resource			
СНР	DE: Renewable Energy Sources Act 2014 - Act (EEG 2014); Market premium (in EEG § 35); Flexibility premium for existing installations (EEG, § 54)						
	UK:Renewables Obligation (RO) scheme, based on green certificates favouring certain technologies						
	DE: Federal Immission Control Act (BImSchG)						
Transport	UK: Renewable Transport Fu and certificatior			Tax Act (EnergieStG) : It for transport biofuels 😑			
biofuels	of a liquid fuel is	on Liquid Fuels, a taxatior taxed separately, based or emission, meaning reduce	its energy cont	tent and carbon			
			DE:	National Bioeconomy Strategy			
Biobased products			DE:	National Bioeconomy Strategy			
	S	E : Swedish Research and I	novation Strate	egy for a Bio-based Economy			

High impact

Moderate impact


Recommended new policy*: forest


*Shaded boxes show recommended new measures

Recommended new policy: agriculture & dedicated

crops

Recommended new policy: wastes

Conclusions

- Slovakian national lignocellulosic biomass potential is substantial at around 5.5m dry tonnes / year (excluding primary forest harvest), with forestry being the main source.
- The existing policy framework forms a foundation for future support measures to be introduced.
- The study has recommended a number of new policies (and refinements to existing policies) that are based on Good
 Practice and can further facilitate mobilisation of
 lignocellulosic biomass for a bio based economy by 2030.

Further reading

www.s2biom.eu

 Deliverable 1.8: A spatial data base on sustainable biomass cost-supply of lignocellulosic biomass in Europe - methods & data sources. From: Dees, M., B.
 Elbersen, J. Fitzgerald,, M. Vis, P. Anttila, N. Forsell, J. Ramirez-Almeyda, D. García Galindo, B. Glavonjic, I. Staritsky, H. Verkerk, R. Prinz, A. Monti, S.Leduc, M. Höhl, P.
 Datta, R. Schrijver, M. Lindner, J. Lesschen, K. Diepen & J. Laitila (2016):

http://www.s2biom.eu/en/publications-reports/s2biom.html

- www.biomass-tools.eu click in main menu on 'Biomass chain data' ---> 'Biomass characteristics'
- www.biomass-tools.eu click in main menu on 'Data downloads'

Maps: DLO Altera, 2016

