

Bulgaria

Roadmap for lignocellulosic biomass and relevant policies for a bio-based economy in 2030

Calliope Panoutsou & Asha Singh

c.panoutsou@imperial.ac.uk

What types of lignocellulosic biomass are included in the analysis?

Lignocellulosic biomass in this analysis includes:

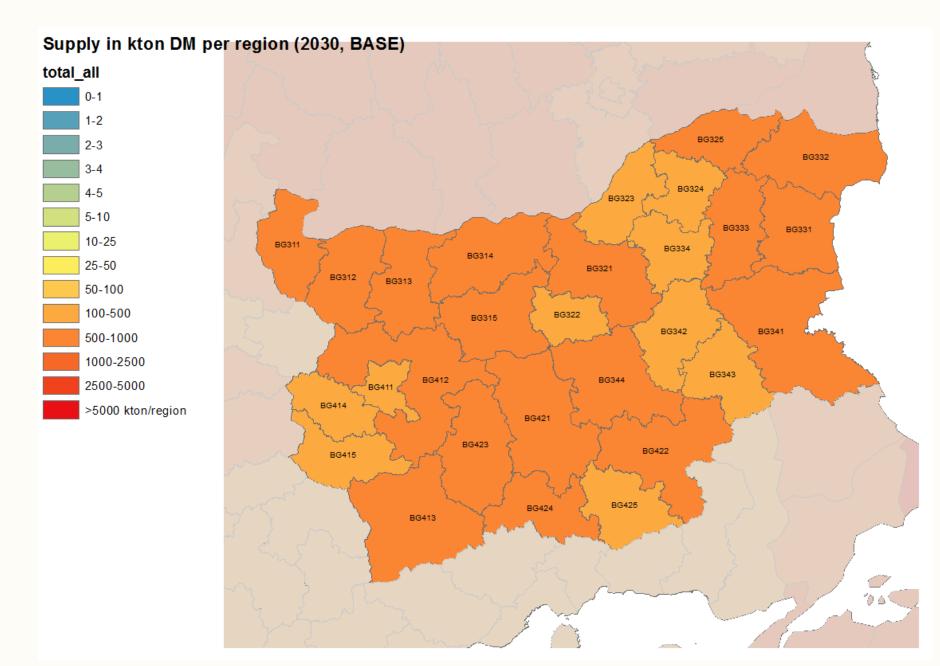
- Forest biomass from primary forestry productions (fellings), primary field residues and secondary forest industry residues;
- Agricultural biomass from primary field activities;
- Biowastes and post consumer wood;
- Dedicated perennial crops.

Context

The roadmap provides scientific evidence for policy, industry and regional stakeholders for the following issues:

- domestic, sustainable lignocellulosic biomass feedstock potentials at national/regional/local levels;
- resource and energy efficient value chains which are expected to be implemented at scale by 2030;
- Sustainability Risks;
- Key indicators per value chain;
- Policies that can facilitate uptake of indigenous lignocellulosic biomass;
- Recommended roadmap actions based on current good practices.

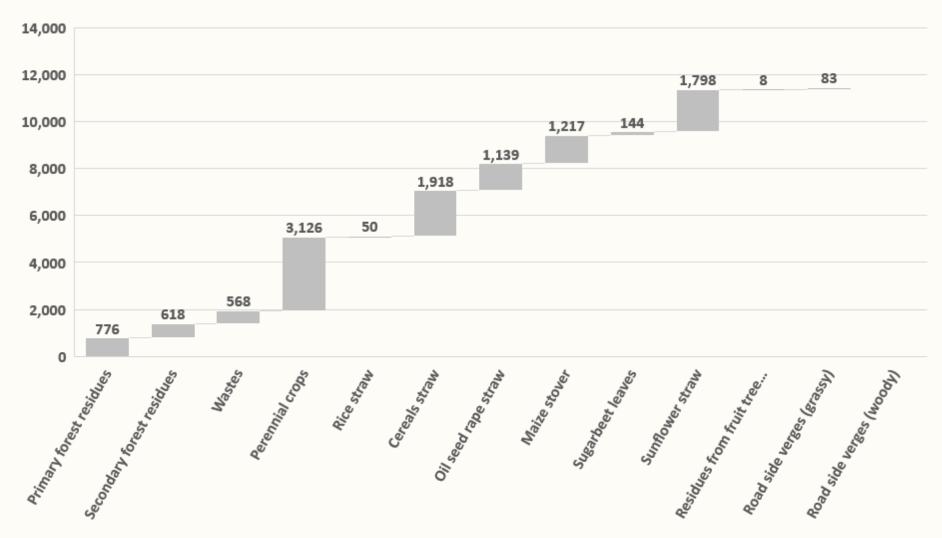
Key questions, addressed by S2Biom


- Where is biomass found?
- What is estimated sustainable potential by 2030?
- What are the sustainable potentials by biomass type and where can they be found?
- How do feedstocks perform in terms of sustainability risks?
- Which value chains have high resource and energy efficiency?
- What is the national policy landscape?
- What future policy interventions can be considered based on good practice?

Where is biomass found?

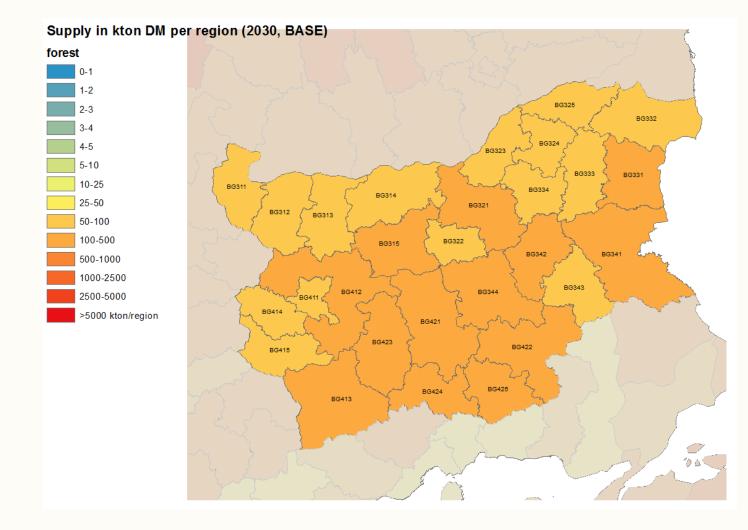
The following slide presents a map with total sustainable*
 occurrence of lignocellulosic biomass by region, measured in
 '000 dry tonnes per year

^{*} The estimated potentials include sustainability criteria as required by the Renewable Energy Directive.

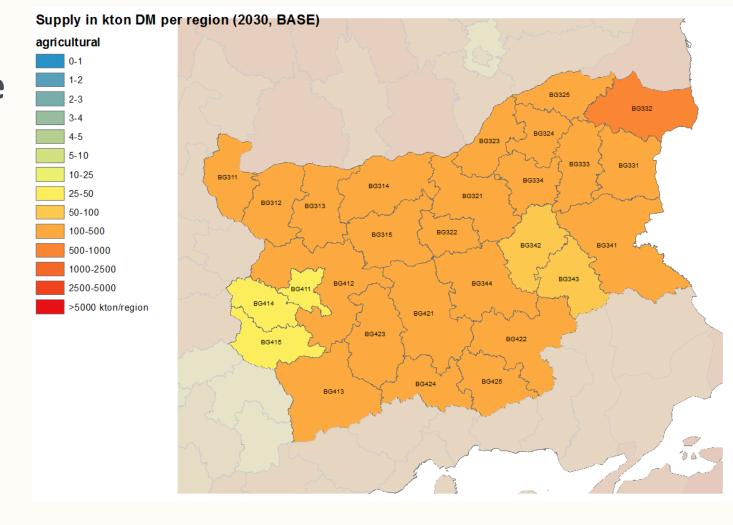

Total lignocellulosic biomass by region

What is the availability per biomass type?

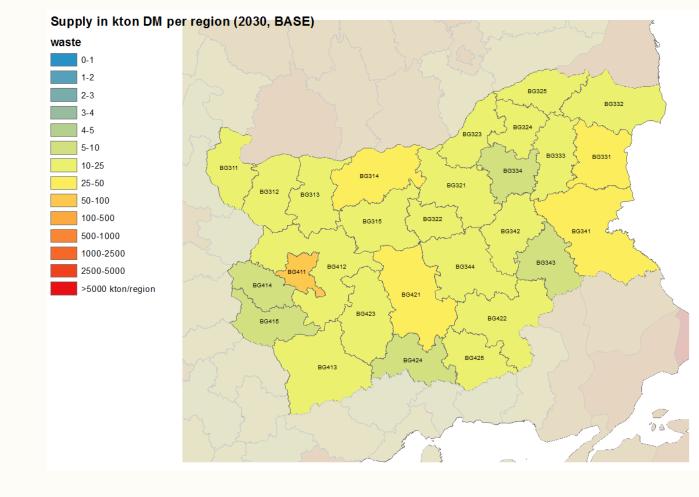
- Sustainable potential from residues, dedicated perennial crops, biowastes and post consumer wood totals 11.5m dry tonnes / year.
- Primary forestry production accounts for an additional 3.2m dry tonnes / year.
- The following slide presents a graph of potential available lignocellulosic biomass by source, excluding primary forestry production.


Lignocellulosic biomass availability by source by 2030 ('000 dry tonnes)

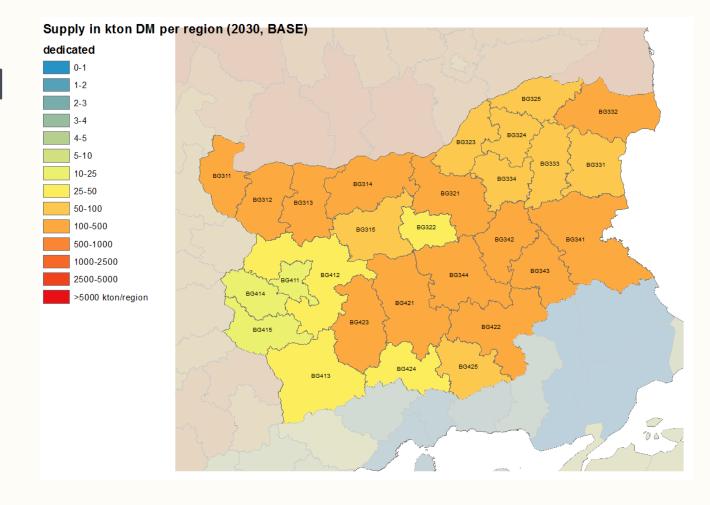
What are the sustainable potentials by biomass type and where can they be found?


- The following slides present maps of estimated sustainable potential lignocellulosic biomass by region and by main source, namely:
 - Forest (primary forestry production, field residues and secondary forest residues)
 - Agriculture (primary field residues and tree prunings)
 - Biowastes and post consumer wood
 - Dedicated perennial crops

Forest


- Estimated sustainable potential can reach up to 4.6m dry tonnes/ year
- Regions with biomass concentration ≥ 100,000 dry tonnes per year are: Sofia,
 Blagoevgrad, Plovdiv, Haskovo, Pazardzhik, Smolyan, Kardzhali, Lovech, Veliko
 Tarnovo, Burgas, Sliven, Stara Zagora and Varna.

Agriculture


- Estimated sustainable potential can reach up to 6.4m dry tonnes/ year
- ■Almost all regions exhibit potentials above 100,000 dry tonnes per year while Dobrich has higher biomass concentration (≥ 500,000 dry tonnes per year):

Biowastes and post consumer wood

- Estimated sustainable potential can reach up to 0.6m dry tonnes/ year
- ■Sofia city exhibits potentials above 50,000 dry tonnes per year.

Dedicated crops

- Estimated sustainable potential can reach up to 3.1m dry tonnes/ year
- ■Regions with biomass concentration ≥ 100,000 dry tonnes per year are: Vidin, Montana, Vratsa, Pleven, Plovdiv, Haskovo, Pazardzhik, Burgas, Sliven, Yambol, Stara Zagora, Veliko Tarnovo and Dobrich.

How do feedstocks perform in terms of sustainability risks?

Feedstock		Sustainability risks (high- red; moderate- yellow; low- green)				
		Land use (iLUC risk)	Biodiversity	Soil & Carbon stock	Water	
	Stemwood from thinnings &					
Primary forestry production	· · · · · · · · · · · · · · · · · · ·					
	Stem and crown biomass from		Loss of dead wood and stumps may	Increased risk of soil erosion;		
Primary forestry production			negatively influence species diversity	risk to loose soil organic carbon;		
	Logging residues from final		and soil fauna. Contrary to this, leaving	risk to loose nutrients and risk of	f	
Primary forestry residues	fellings		them all on the ground may result in	reduced soil fertility and soil	No effect on the quantity; If no removal lea	
			increased fertilisation (N and wood ash)	structure when overharvesting	to increased fertilisation the leaching on N t	
Primary forestry residues	Stumps from final fellings	None	and negative impacts on vegetation	forest residues	water may increase.	
Secondary residues from						
wood industries	Saw mill residues			There are debates that using the	!	
				wood in panel boards, creates a		
Secondary residues from	Other wood processing			carbon stock in comparison to		
wood industries	industry residues	None	None	combustion of the wood	None	
				Moderate risk to loose soil		
Agricultural residues	Straw/stubbles			organic carbon when		
Agriculturur residues	Straw/stabbles	1		overharvesting crop residues;		
			Biodiversity loss when harvesting too	risk to loose nutrients when		
	Woody prunning & orchards		many crop residues. This may also have	overharvesting		
Agricultural residues	residues	None	adverse effect on soil biodiversity	0 T C T T C C C T C C C C C C C C C C C	None	
Secondary residues of	By-products and residues from					
industry utilising	food and fruit processing					
agricultural products	industry	None	None	None	None	
				Positive in regions		
				where it avoids		
				landfill; Digested		
				organic waste is a		
			Positive in regions	source of soil		
Biodegradable municipal			where it avoids	improving	Lower risk of water pollution in regions	
waste	Biodegradable waste	None	landfill	material.	where it avoids landfill	
	Hazardous post consumer					
Post consumer wood	wood		Positive in regions	Positive in regions		
	Non hazardous post consumer		where it avoids	where it avoids	Lower risk of water pollution in regions	
Post consumer wood	wood	None	landfill	landfill	where it avoids landfill	
				Potential use of		
			Can provide winter shelter;	marginal lands,	In arid circumstances ground water	
			birds nesting inside plants;	which can increase soil	abstraction and depletion possible	
		Higher land productivity	may, however, destroy sensitive	quality and soil carbon stock;	because of deep roots; Some use of fertilise	
		when marginal lands	habitats (e.g. Steppic habitats,	Can damage soil	/ pesticides which can	
		used; in case of agricultural	High Nature Value farmland,	structure (e.g. Harvesting, root	be leached to ground water and pollute	
Perennial lignocellulosic	Miscanthus, switchgrass, giant	lands potential (indirect)	biodiversity rich grasslands) when	removal after 20	habitats, but effect is	
crops		land use change;	introduced.	vears),	very limited.	

How do feedstocks perform in terms of sustainability risks?

Feedstock		Sustainability risks (high- red; moderate- yellow; low- green)					
		Land use (iLUC risk)	Biodiversity	Soil & Carbon stock	Water		
	Stemwood from						
Primary forestry	thinnings & final						
production	fellings						
	Stem and crown						
Primary forestry	biomass from early						
production	thinnings						
Primary forestry	Logging residues						
residues	from final fellings						
Primary forestry	Stumps from final						
residues	fellings						
Secondary residues							
from wood industries	Saw mill residues						
	Other wood						
Secondary residues	processing industry						
from wood industries	residues						
Agricultural residues	Straw/stubbles						
	Woody prunning &						
Agricultural residues	orchards residues						
	By-products and						
Secondary residues	residues from food						
of industry utilising	and fruit processing						
agricultural products	industry						
Biodegradable							
municipal waste	Biodegradable waste						
	Hazardous post						
Post consumer wood	consumer wood						
	Non hazardous post						
Post consumer wood	consumer wood						
	Miscanthus,						
Perennial	switchgrass, giant						
lignocellulosic crops	reed, willow, poplar						

Which value chains have high resource and energy efficiency?

- The following show value chains with relatively high efficiency in the following aspects:
 - Energy efficiency
 - Greenhouse gas emissions
 - Air quality
 - Technological maturity

Value chains: forest and agriculture

	Energy efficiency	Greenhouse gases	Air quality	Technological maturity			
	Combustion at small scale including households						
Strength	High conversion efficiency with modern technology	Low fossil input in the value chain	-	Fully commercial, long experience			
Weakness	Older stoves have low conversion efficiency. Heat not always efficiently used.	-	High emissions from older wood stoves.	-			
	Combustion at small-medium scale including buildings						
Strength	High conversion efficiency	Low fossil input in the chain	-	Fully commercial, long experience			
Weakness	-	-	Emissions better than smaller scale but higher than natural gas.	-			
	Combustion at medium scale, heat led						
Strength	High conversion efficiency	Low input of fossil fuels; high GHG savings especially for Combined Heat and Power	Better control options for emissions	Fully commercial			
Weakness	-	-	Higher emissions than natural gas combustion.	-			
	Biochemical - lignocell. hydrolys	sis and fermentation					
Strength	-	High GHG savings in case of process integration and limited fossil input.	Ethanol has low emissions as transport fuel.	-			
Weakness	Around 50% conversion efficiency	-	-	Pre-commercial phase			

Value chains: wastes

	Energy efficiency	Greenhouse gases	Air quality	Technological maturity			
	Waste incineration and energy recovery						
Strength	Adding energy recovery to waste management improves its pathway; high efficiency if CHP	High GHG benefit, particularly compared to landfill (avoided methane emissions); energy recovery substitutes fossil fuels	If landfill is avoided, lower air emissions.	Fully commercial			
Weakness	Relatively low net energy output; auxiliary fuel may be required due to low calorific value of fuel		Issues in terms of emissions of waste incineration. Emission control is circa one third of project cost.	-			
	Combustion at medium scale, heat driven)						
Strength	>85% conversion efficiency in case of heat only; 65-85% efficiency for CHP installations.	Low input of fossil fuels; especially in case of CHP GHG savings can be high	Better control options for PM emissions compared to small scale installations.	Fully commercial			
Weakness	-	_	Still higher PM emissions than natural gas combustion.	-			
	Gasification & CHP at medium scale - heat driven						
Strength	Up to 80% conversion efficiency, depending on heat only or CHP installations.	Low/no input of fossil fuels; especially in case of CHP GHG savings can be high	Low emissions of gas engine or turbine	(Early) commercial			

Key indicators per value chain

				Non-renewable energy requirement (GJ non-renewable inputs/GJ outputs)	(€ outputs- € inputs (excl.biomass), per dry tonne of biomass input at plant gate)	GHG reduction, compared to reference	Levelised life cycle cost, based on CAPEX and OPEX (incl. feedstock cost), expressed in relation to the output of energy carriers (€/GJ energy carriers)	Jobs in FTE along
	HOUSENOIDS	Residential wood chips boilers - small scale (10-25 kW)	1.39 GJ/GJ	0.044 GJ/GJ	188 €/ton d.m.			3 FTE/ MWth
50	Services	Wood chip boilers-large size (50 kW)	1.24 GJ/GJ	·	211 €/ton d.m.			3.5 FTE/ MWth
omas	Industry	CHP using solid biomass > 15MW	2.79 GJ/GJ	0.088 GJ/GJ	198 €/ton d.m.	93%	30 €/GJ	3.8 FTE/ MWth
Forest biomass		CHP using solid biomass 0.5 - 15 MW	1.31 GJ/GJ		280 €/ton d.m.			3.5 FTE/ MWth
		Straw and agricultural residues for small scale local heating plants	1.39 GJ/GJ	0.089 GJ/GJ	170 €/ton d.m.	88%	. 18 €/MJ	3 FTE/ MWth
Agricultural biomass	Inductry	Straw and agricultural residues for CHP > 10 MW	1.31 GJ/GJ	0.084 GJ/GJ	l 2 53 €/ton d.m.	92%	20 €/GJ	3.8 FTE/ MWth
ultura	Utility	Direct co-firing coal process	1.21 GJ/GJ	0.030 GJ/GJ	253 €/ton d.m.	96%	20 €/GJ	3.5 FTE/ MWth
Agric	Bioethanol 2 nd	Cellulose-EtOH	2.44 GJ/GJ		144 €/ton d.m.			3.5 FTE/ MWth
es	Inductry/ Litility	anaerobic digestion & medium scale CHP	2.00 GJ/GJ	0.007 GJ/GJ	197 €/ton d.m.	88%	28 €/GJ	2 FTE/ MWth
Biowastes	IIranchort	anaerobic digestion + upgrading to methane	1.56 GJ/GJ	0.071 GJ/GJ	122 €/ton d.m.	81%	14 €/GJ	2.5 FTE/ MWth

What is the national policy landscape?

- The following slides provide diagrams to illustrate how existing policies / measures support one or more of the following:
 - Biomass supply
 - Logistics
 - Conversion
 - Distribution
 - Fnd use
- Policies / measures are categorised as: 1) Regulation, 2)
 Financing and 3) Information

^{*} Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

Current policy: forest

Biomass Supply

Logistics

Conversion

Distribution

End Use

RDP - Bulgarian Rural Development Programme

ERSA - Grid connection

BEERECL: Investment subsidies, Loans

Regulations Financing

Current policy: agriculture & dedicated crops

Biomass Supply

Logistics

Conversion

Distribution

End Use

RDP - Bulgarian Rural Development Programme

BEERECL: Investment subsidies, Loans

CAP: Bulgarian Rural Development

Programmes

ERSA – Biofuel quota

ERSA - Grid connection

ERSA Feed-in tariff

Excise Duties and Tax Warehouses Act

Regulations Financing

Current policy: wastes

Biomass Supply

Logistics

RDP - Bulgarian Rural Development
Programme

BEERECL: Investment subsidies, Loans

Conversion

Distribution

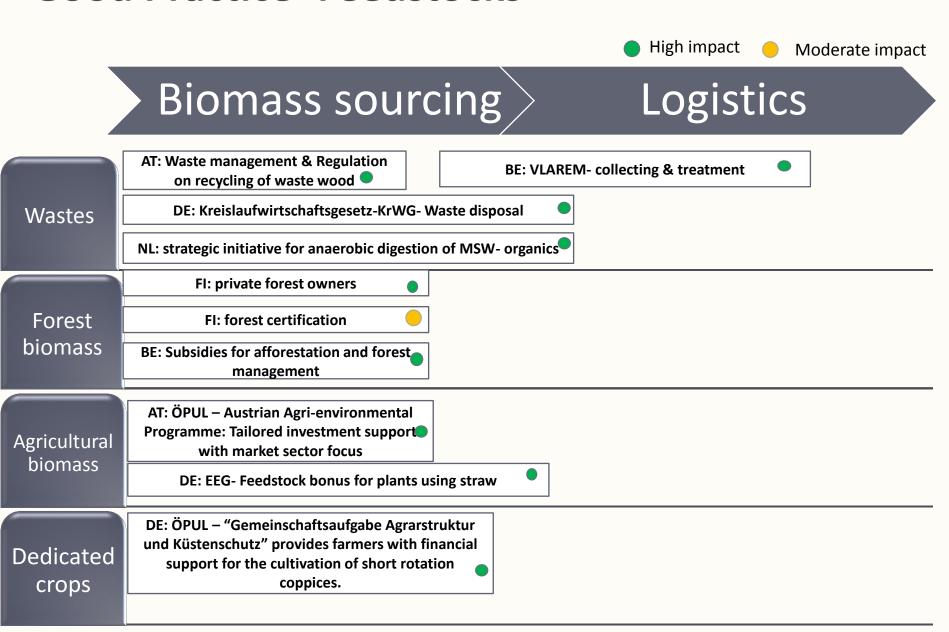
End Use

ERSA – Biofuel quota

ERSA - Grid connection

ERSA Feed-in tariff

Excise Duties and Tax Warehouses Act


Regulations Financing

What improvements can be made based on good practice?

- The following slide provides a diagram that illustrates selected policies from Member States that have had significant positive impact in promoting the use of lignocellulosic biomass
- Based on this Good Practice, recommended new policies are shown (shaded boxes) to complement existing policies

^{*} Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

Good Practice- Feedstocks

Good Practice- End use sectors High impact Moderate impact Distribution **End Use** Conversion UK: Renewable Heat Initiatives (RHI) AT: Climate and Energy Fund-Subsidy scheme wood heating. NL: Energy Investment Allowance (EIA), tax reductions for boilers Heat ES: BIOMCASA I & II, funding for efficient use of biomass DE: repayment bonus from market program (MAP) and soft loans with low interest rates public sector bank KfW AT: Green Electricity Act & CHP Act: refines scales of applications and target specific sectors and biomass resource types and end uses. DE: Renewable Energy Sources Act 2014 - Act (EEG 2014); Market premium (in EEG § 35); Flexibility premium for CHP existing installations (EEG, § 54) UK:Renewables Obligation (RO) scheme, based on green certificates favouring certain technologies DE: Federal Immission Control Act (BImSchG) DE: Energy Tax Act (EnergieStG): It UK: Renewable Transport Fuel Obligation (RTFO) accounts for transport biofuels and certification system **Transport** FI: Act of Excise Duty on Liquid Fuels, a taxation system, in which each component biofuels of a liquid fuel is taxed separately, based on its energy content and carbon dioxide emission, meaning reduced taxation for biofuels **DE: National Bioeconomy Strategy**

Biobased products

DE: National Bioeconomy Strategy

SE: Swedish Research and Innovation Strategy for a Bio-based Economy

Recommended new policy*: forest

Biomass Supply

Logistics

Conversion

Distribution

End Use

Climate &

Energy Fund: Subsidy

scheme wood

heating

RDP - Bulgarian Rural Development Programme

BEERECL: Investment subsidies, Loans

Forest Act: Elaborate on restrictions related to sustainability (e.g. concerning de-/ re-/afforestation).

Regulation on recycling of waste wood

Forest Certification

ERSA - Grid connection

Combined Heat and Power Act

Green electricity feed-in tariff regulation: introduce premiums for specific diameters cuttings; thinnings, etc.

Fixed premiums
Follow-up tariffs for existing RES-E
plants

Standard containing emission limits for wood boilers

Chandand containing anciesion limits for wood bailans

*Shaded boxes show recommended new measures

Recommended new policy: agriculture & dedicated crops

Biomass Supply

Logistics

RDP - Bulgarian Rural Development
Programme

BEERECL: Investment subsidies, Loans

CAP: Bulgarian Rural Development Programmes

Standards for agricultural biomass

Conversion

Distribution

End Use

ERSA - Biofuel quota

ERSA - Grid connection

ERSA Feed-in tariff

Excise Duties and Tax Warehouses Act

Combined Heat and Power Act

Green electricity feed-in tariff regulation: introduce premiums for agricultural residues and dedicated crops

Fixed premiums
Follow-up tariffs for existing RES-E
plants

Climate &
Energy Fund:
Subsidy scheme
heating with
agricultural
residues, pellets
from crops

Regulation on agricultural raw materials for biofuels and bioliquids

Regulations

Financing

Recommended new policy: wastes

Logistics **Biomass Supply** Conversion Distribution **End Use** RDP - Bulgarian Rural Development ERSA – Biofuel quota Programme **ERSA** - Grid connection BEERECL: Investment subsidies, Loans ERSA Feed-in tariff **Waste Management Strategy** Excise Duties and Tax Warehouses Act **Combined Heat and Power Act** Green electricity feed-in tariff regulation: introduce premiums for Standards for biowastes biowastes **Fixed premiums Biomethane** injection Regulations **Financing** Information

Conclusions

- Bulgarian regions all have relatively high biomass availability. The national lignocellulosic biomass potential is around 11.5m dry tonnes / year (excluding primary forest harvest), with forest, agriculture and dedicated crop sources all significant.
- The existing policy framework is provides a reasonable foundation, with several regulations and financial mechanisms for each sector.
- The study has recommended a number of new policies (and refinements to existing policies) that are based on Good Practice and can further facilitate mobilisation of lignocellulosic biomass for a bio based economy by 2030.

Further reading

- www.s2biom.eu
- Deliverable 1.8: A spatial data base on sustainable biomass cost-supply of lignocellulosic biomass in Europe methods & data sources. From: Dees, M., B. Elbersen, J. Fitzgerald,, M. Vis, P. Anttila, N. Forsell, J. Ramirez-Almeyda, D. García Galindo, B. Glavonjic, I. Staritsky, H. Verkerk, R. Prinz, A. Monti, S.Leduc, M. Höhl, P. Datta, R. Schrijver, M. Lindner, J. Lesschen, K. Diepen & J. Laitila (2016): http://www.s2biom.eu/en/publications-reports/s2biom.html
- www.biomass-tools.eu click in main menu on 'Biomass chain data' ---> 'Biomass characteristics'
- www.biomass-tools.eu click in main menu on 'Data downloads'

Project coordinator

Project partners

Scientific coordinator

Imperial College London

Maps: DLO Altera, 2016

