

Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe

S2Biom Project Grant Agreement n°608622

D4.11

User guide for the S2BIOM integrated toolset

Version: 0.2

6.04.2017

About S2Biom project

The S2Biom project - Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe - supports the sustainable delivery of non-food biomass feedstock at local, regional and pan European level through developing strategies, and roadmaps that will be informed by a "computerized and easy to use" toolset (and respective databases) with updated harmonized datasets at local, regional, national and pan European level for EU28, Western Balkans, Moldova, Turkey and Ukraine. Further information about the project and the partners involved are available under <u>www.s2biom.eu</u>.

About this document

It has been prepared by:

Due date of deliverable:	PM 17
Actual submission date:	2017-16-17
Start date of project:	2013-01-09
Duration:	39 months

Work package	4
Task	Different tasks in WP4
Lead contractor for this	DLO-Alterra
deliverable	
Editor	Berien Elbersen
Authors	Berien Elbersen, Hugo de Groot & Igor Staritsky; Raymond Schrijver, Jan-Peter Lesschen & Kees van Diepen (DLO Alterra); Bert Annevelink & Wolter Elbersen (DLO-FBR); Matthias Dees & Pawan Datta (University Freiburg); Sylvain Leduc & Nicklas Forsell (IIASA); Tijs Lammens, Martijn Vis & Douwe van den Berg (BTG); Leire Iriarte & Uwe Fritsche (IINAS); Marc Londo, Joost van Stralen & Ayla Uslu (ECN); Luc Pelkmans & Ruben Guisson (VITO) ; Ilze Dzene & Rainer Janssen (WIP) ; Ludger Wenzelides (FNR) ; Calliope Panoutsou (Imperial College) ; Daniel García Galindo (CIRCE); Perttu Anttila, Robert Prinz (LUKE); Jacqueline Ramirez-Almeyda, Andrea Monti (UniBo); Joanne Fitzgerald, Hans Verkerk, Sergey Zudin, Marcus Lindner (EFI).
Quality reviewer	Calliope Panoutsou & Ludger Wenzelides

Dissemination Level				
PU	Public	Х		
PP	Restricted to other programme participants (including the Commission Services)			
RE	Restricted to a group specified by the consortium (including the Commission Services):			
CO	Confidential, only for members of the consortium (including the Commission Services)			

Version	Date	Author(s)	Reason for modification	Status
0.1	10/01/2017	DLO-Alterra		Final
0.2	6/04/2017	DLO	Minor editorial corrections concerning statements referring to the 7th Frame Programme and responsibility.	Final

This project entitled S2BIOM (Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe) is co-funded by the European Union within the 7th Framework Programme. Grant Agreement n°608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Editor contact details:

Dr. Berien Elbersen Wageningen Environmental Research, Team Earth Informatics P.O.Box 47 6700 AA Wageningen The Netherlands +31 (0)317 481935 (phone)/+31 (0)653728652 (mobile) berien.elbersen@wur.nl

Executive summary

This is the user guide for all components in the S2BIOM toolset. This report provides detailed guidelines to users of the S2BIOM toolset. First it provides a full overview of all components in the toolset and their functionalities. This is followed by specific user instructions for the more complicated tools integrated in the S2BIOM toolset. First the user instructions for the Policy data viewer are presented, followed by those for the biomass supply data viewer and for the biomass cost supply data viewer. In separate chapters the detailed user instructions are given for the more complicated tools developed the Bio2Match tool and the LocaGIStics tool.

The client side of the S2BIOM toolset is a web based system. Users can access the toolset by their web browsers. The final version runs on all major browsers.

www.biomass-tools.eu

The S2BIOM toolset contains all data, tools, documents and reports generated in the S2BIOM project. Under the different tabs in the main menu the user can click to get access to these different tools, data, documents and reports. The tools enable the user to interact with the results by making sub-selections for data of interest; or to design own biomass delivery chains and evaluate the performance; or to obtain to-the-point information on specific issues of relevance for developing biomass delivery chains. These can be key characteristics on logistical components, biomass conversion technologies, matching of biomass types with technologies, biomass potentials, cost and characteristics, biomass markets, sustainability issues, policies and regulations, and national biomass strategies.

Table of contents

Т	able of	contents	. 4
1	Intro	duction to using the S2BIOM toolset	. 6
	1.1	Introduction and structure of the report	. 6
	1.2	Getting started	. 6
2	Over	view of the S2BIOM Toolset and its functionalities	. 8
	2.1	General user Interface (GUI) and overview of tools in S2BIOM toolset	. 8
	2.2	General data	. 9
	2.3	Biomass chain data and S2BIOM tools	11
	2.3.1	Biomass supply (Europe) data viewer	11
	2.3.2	Biomass cost supply (Europe) data viewer	12
	2.3.3	Biomass cost-supply imports	14
	2.3.4	Biomass characteristics	15
	2.3.5	Database for biomass conversion technologies	15
	2.3.6	Database for logistical concepts	17
	2.3.7	Value chain sustainability	18
	2.4	Full chain assessment tools	19
	2.5	S2BIOM report downloads	20
	2.6	Data downloads	21
3	Regu	alatory and financial framework: Policy viewer: detailed us	er
in	structio	ons	21
	3.1	Instructions on how to use the database	21
	3.2	How to update Instruments & Measures in the Database?	23
	3.3	How to add new Instruments & Measures in the Database?	24
4	Bion	nass supply and cost-supply viewers: detailed user instructions	28
	4.1	Biomass supply viewer	28
	4.2	Biomass cost-supply viewer	30
5	Bio2	Match tool: detailed user instructions	33
6 d	Full etailed	chain assessment tools; BeWhere viewing tool and LocaGIStic user instructions	:s: 39
	6.1	BeWhere output viewing tool	39
	6.2	LocaGIStics	39
7	Anne	exes	47

Annex 1	Overview	of bi	omass	categories	included	in th	ne	S2BIOM	database	for
Europe										48

1 Introduction to using the S2BIOM toolset

1.1 Introduction and structure of the report

The client side of the S2BIOM toolset is a web based system. Users can access the toolset by their web browsers. The final version runs on all major browsers.

www.biomass-tools.eu

The S2BIOM toolset contains all data, tools, documents and reports generated in the S2BIOM project. Under the different tabs in the main menu the user can click to get access to these different tools, data, documents and reports. The tools enable the user to interact with the results by making sub-selections for data of interest; or to design own biomass delivery chains and evaluate the performance; or to obtain to-the-point information on specific issues of relevance for developing biomass delivery chains. These can be key characteristics on logistical components, biomass conversion technologies, matching of biomass types with technologies, biomass potentials, cost and characteristics, biomass markets, sustainability issues, policies and regulations, and national biomass strategies.

This is the user guide for all components in the S2BIOM toolset. This report has the following structure. In Chapter 2 a full overview is given of all components in the toolset. In the next chapters specific user instructions are given for the more complicated tools integrated in the S2BIOM toolset. In Chapter 3 the user instructions are given for the Policy data viewer and download tool. In Chapter 4 the user instructions are given for the biomass supply data viewer and for the biomass cost supply data viewer. In Chapter 5 it is explained how to use the Bio2Match tool. In Chapter 6 the LocaGIStics tool use is explained. In Chapter 7 an overview is given of all data and documents that can be downloaded from the toolset.

1.2 Getting started

When starting to use the S2BIOM toolset users must sign in. The first time they start using the toolset they have to create their own user account by *clicking* on the top right tab '**Sign in**' and in the next menu on the tab 'Create Account'. The account name and password is automatically created and all users creating an account are automatically registered in a registry database in the tool.

Because people enter through a personal account, activities in the toolset are tracked and documents can be saved elaborated by the user in the LocaGIStics tool. When

D4.1

the user logs-in again the files remain available and can be further elaborated by the user.

TOOIS TOT DIOTHASS CHAINS

Sign In	×
Screen Name	
This field is required.	
Password	
This field is required.	
Remember Me	
Sign In	
🕂 OpenID 🛛 & Create Account 🛛 @ Forgot Password	

ove to get a full overview of contents of the S2BIOM toolset.

2 Overview of the S2BIOM Toolset and its functionalities

2.1 General user Interface (GUI) and overview of tools in S2BIOM toolset

The overall structure of the GUI is presented below. The main items according to which the entrance to the S2BIOM tool set is organised are presented in this overview. When users enter the GUI it opens in the 'Home' view. It provides an explanation on the background and objectives of the project, to whom the toolbox of S2BIOM is targeted, how to use it and links to relevant documents generated in the project.

In the following the different entry items are further described to get a full overview how the S2BIOM toolset is organised and what information can be found where.

2.2 General data

S2Biom Tools for biomass chains
Home 🛛 General data 💌 Biomass chain data 👻 Tools 👻 S2BIOM Report downloads 🛛 Data downloads 👻 Maintain 👻
General da Scenarios
Scenarios (V Regulatory & financial framework
In S2BIOM 4 scenarios were evaluated which serve as the basis for the assessment of future biomass demand and consumption patterns for energy and biobased products and cover EU28, western Balkans (WB), Moldova (MD), Ukraine (UKR) and Turkey (TR).
The 4 scenarios are:
1) Centralised Europe scenario: Large biorefineries within Europe
2) Decentralised local scenario: Local/ regional decentralized units
3) Policy active scenario
4) Policy passive scenario
The scenarios have been specified in a continuim of two key uncertainties:
The availability level of (sustainable) biomass, influenced by the strictness of sustainability criteria and the level of competition for resources.
• The extent to which biobased options will produce in relatively large-scale, centralized conversion systems, or in relatively small-scale, decentralized units.
A short overview of the scenarios is given in the underneath Figure. For more detailed information on the scenario characteristics and how they are used we recommend to read Deliverable (D7.1).
The scenarios were used as a basis to assess with the ReSolve model, future biomass demand and consumption patterns. The results of this work can be found in D7.2 (A quantitative estimate of biomass demand in 2020 and 2030), D7.2a (Market analysis for heat, electricity and biofuels), D7.2b (Market analysis for lignin and sugar platforms), D7.2c (Market analysis of biomethane, BTX, methanol, hydrogen, ethylene, and mixed alcohols) and D7.3 (Integrated assessment final report).

General data: Under this item the following output is included:

- 1) **Scenarios** developed in the project and information on these with links to relevant reports which are opened from the S2BIOM data directory
- 2) **Biomass demand** provides access to information in the form of text and through links which can be opened according to user selections.
- 3) In the Regulatory & financial frameworks information is provided in text, through links to open documents from the S2BIOM data directory and by providing access to a separate tool 'S2Biom policy database' which is available at an external server hosted by VITO: https://s2biom.vito.be/. It is a catalogue of policy instruments and measures, information on the regulatory and financial frameworks impacting bioeconomy development throughout Europe. For each policy measure / instrument, information is provided on a set of descriptive criteria. These are displayed in the form of factsheets.

For further user instructions on how to use the Policy database go to Chapter 3 in this report.

2.3 Biomass chain data and S2BIOM tools

Under the item '**Biomass chain data**' access is provided to all data included in the central S2BIOM database and this is accessed interactively through several viewing tools.

Admin • My Sites • • Berien Elbersen • Tools for biomass chains					
Home General data 💌	Biomass chain data 💿 Tools	S2BIOM Report downloads Data downloads 👻 Maintain 👻			
Biomass chain data / Biomass su	Biomass supply (Europe)				
Welcome to the biomass supply view year and potential type combination levels (Kton dm or TJ), area weighte	Biomass cost/supply (Europe) Biomass cost-supply (Imports) Biomass characteristics	ke selections of biomass types for which data can be displayed in a map in relation to amount of biomass available per el, the year and the different types of potentials. In addition the user can also choose the level entities in absolute ghted average road side cost (€/ton dm).			
For further user instructions open us biomass type is D1.6 . An overview	Conversion technologies Logistical components	round report providing an extensive description and metainformation of how the cost supply data was assessed per ted in the S2BIOM Atlas (D1.8).			
For furthershort information on biom	Value chain sustainability	tial types covered see text underneath the supply viewing tool. See also deliverables D1.1 and D1.7.			

In the following an overview is given of the different tools enabling the interaction with the data contained in the S2BIOM database.

2.3.1 Biomass supply (Europe) data viewer

Underneath a view of the Biomass supply viewer for Europe.

This tool enables the user to make selections of biomass types for which data can be displayed in a map in relation to amount of biomass available per year and potential type combination. The user can select the regional level, the year and the different types of potentials. In addition the user can also choose the level entities in absolute

levels (Kton dm or TJ), area weighted (Kton dm/km2 or GJ/km2) and weighted average road side cost (€/ton dm)..

The viewer contains information on 56 types of biomass, at various NUTS levels and for 2 to 9 types of potentials. The biomass types are divided into 9 categories with 15 subcategories. An overview of all biomass types included in this viewer and thus in the S2BIOM database is given in Annex 1 of this report

The geographical information is organised by the 2013 NUTS regions. The NUTS levels 0 to 3 are loaded into the database. This can be expanded if needed. Most information has been delivered at NUTS level 3 and can be presented at Nuts 0, 1, 2 and 3 levels depending on the users choice.

The cost-supply are divided into 3 or more types of potentials (or scenarios as named in the scheme underneath) and for 3 time periods:

scenario	year	year	year
Technical potential	2012	2020	2030
Base Potential	2012	2020	2030
User defined potential 1	2012	2020	2030
User defined potential 2	2012	2020	2030
User defined potential 3	2012	2020	2030
User defined potential	2012	2020	2030

For the user defined potentials; these are to be defined specifically per biomass type and sometimes there are only 2 for biomass A, while there could be 4 for biomass type B.

Further user instructions on this tool are presented in Chapter 4 of this report.

2.3.2 Biomass cost supply (Europe) data viewer

This biomass cost-supply viewer enables the user to make selections of biomass types for which cost levels can be displayed in a cost-supply graph. The graph displays the total accumulated biomass (ordered from cheap to expensive) against the average **road side cost level** for the country/countries and scenario years selected. The amount of biomass is displayed on the y-axis and the road side cost level on the x-axis.

For further user instructions see Chapter 4 in this report. The background report providing an extensive description of how the cost supply data was assessed per biomass type is Deliverable D1.6 (Dees et al, 2016).

Road side cost refer to all biomass production collection and pre-treatment cost up to the road where the biomass is harvested/collected. The road side cost are a fraction of the total 'at-gate-cost.' Cost levels assessed here do NOT refer to market prices!

The cost for the collection from the road-side to the gate as well as the pre-treatment costs are estimated in other WPs in S2BIOM for specific biomass delivery chains further S2BIOM assessed in models (ReSolve) and the tools (BeWhere & LocaGIStics) accessible via this the main menu in toolset under 'Tools'.

The cost up to the road side includes the cost for production prior to harvesting, in case of dedicated perennial crops, crop establishment, fertilizing, crop protection, harvesting/cutting, uprooting, baling, shredding, chipping, crushing collecting and/or densifying in the point of harvest and bringing it to the main road side. Activities related to establishing the contract (transaction costs) and other overheads are not (yet) accounted for. These cost can be quite substantial. One way of dealing with this is to assume a fixed percentage on top of the calculated road side cost (typically in the range of 20% - 50%).

The overall methodology followed to calculate the road side cost is the *Activity Based Costing* (ABC). It involves the whole production process of alternative production routes that can be divided in logical organisational units, i.e. activities. Since the production of most biomass is spread over several years, often long term cycles in which cost are incurred continuously while harvest only takes place once in so many years, the Net Present Values (NPV) of the future costs are calculated.

The cost data elaboration also requires a feedstock specific approach. If cost are estimated for biomass that is specifically produced for energy or biobased products, i.e. in the case of dedicated crops the cost structure is clear and all cost can be allocated to the final product. All cost should include the fixed and variable cost of producing the biomass including land, machinery, seeds, input costs and on field harvesting costs. If the biomass is a waste, i.e. cuttings of landscape elements or

D4.1

grass from road side verges, the cost could be zero, as cutting and removing these cutting is part of normal management. However, bringing the biomass to the conversion installation requires some pre-treatment costs, e.g. for drying or densifying and then transport costs have to be made to bring it to the conversion installation. These cost will not be assessed here however as we concentrate on the road side cost.

Crop residues also require a separate approach as harvesting cost can usually be allocated to the main products, i.e. grain in the case of cereal straw, and not to the residue. However, the baling of the straw and the collection up to the roadside can be included in the costs.

The cost are determined for 2012, the reference year and are kept constant in the future years 2020 and 2030.

2.3.3 Biomass cost-supply imports

For the S2BIOM project, the potential of import of lignocellulosic biomass was assessed and specified in the form of cost supply curves from countries outside EU28 such as the Russian Federation, Ukraine, Canada, Brazil and USA.

The interlinked GLOBIOM (Global Biosphere Management Model) and G4M (Global Forest Model) model have been used to create the cost supply curves of biomass trade (import). In its core, GLOBIOM is a partial equilibrium model designed to assess the resource efficiency of biomass use, including energy production, livestock management, and food and timber production. In essence, it is an economic model that jointly covers the forest, agricultural, livestock, and bioenergy sectors, inherently allowing it to consider a range of direct and indirect implications of biomass use

One set of cost supply curves, that can be accessed through this part of the toolset was created to define how much biomass can be imported to EU28 from the rest of the world for bioenergy purposes (mainly heat and electricity), and one curve defining the potential import of biofuels. Though the two cost supply curves differ in terms of the end use of biomass that is imported, they are both defined in terms of the amount of biomass that could in the future be imported for a specific cost. In the case of bioenergy, the cost supply curve was defined in terms of cubic meters of wood chips and wood pellets that can be imported for heat and electricity production. In the case of biofuels, the cost supply curve was defined in terms of PJ of ethanol (1st and 2nd generation) and biodiesel that can be imported for the transport sector.

The cost-supply data on imports can be viewed in this part of the toolset, but the data can also be downloaded in excel table format.

2.3.4 Biomass characteristics

The cost supply database also includes additional values per type of biomass in relation to the physical and chemical composition of the biomass and meta information on the way and sources from where the composition information is derived. The compositional data on the biomass are crucial for the biomass matching tool explained in next Section under integrated assessment tools.

2.3.5 Database for biomass conversion technologies

Through the **Conversion technologies viewing tool** users can access the database on lignocellulosic biomass conversion technologies characteristics. The data included in this database are feeding the **Bio2Match**, the **BeWhere** and the **LocaGIStics** tools all accessible via the main menu in this toolset under '**Tools**'.

The 51 conversion technologies included in the database are presented in an overview table in the first view of the tool (see underneath). To access the detailed technology characterisation sheets in de database the user can *click* on the technology number in the last column of the table (to the right). To return to the overview table again click on the return arrow.

75 Items per Pa	ge+ Page 1 of 1+	Showing 51 results.		← First	Previous	Last -
Category =	Subcategory =	Name ¢	Output capacity	Common biornass input	Technology readiness level	Numbe
Direct combustion of solid biomass	Fixed bed combustion for heat	Grate boiler with straw for heat	Heat (2 MWth)	Cereals straw, Giant reed (Perennial grass)		75
Treatment in subcritical water	Hydrothermal processing	HTC Hydrothermal carbonisation of biowaste to coal for CHP	Biocoal (2.1 tonnes/hour)	Separately collected biowaste: Biodegradable waste of separately collected municipal waste (excluding textile and paper), Biowaste as part of integrafy collected municipal waste: Biodegradable waste of not separately collected municipal waste (excluding textile and paper). Other bioproducts and residues from food and fut processing inducty	Level 7, Integrated pilot system demonstrated	74
Direct combustion of solid biomass	Fixed bed combustion for CHP (steam cycle)	Grate boiler with agrobiomass for CHP	Power (10 MWe), Heat (20 MWth)	Cereals straw, Giant reed (Perennial grass)	Level 9, System ready for full scale deployment	73
Fast pyrolysis	Pyrolysis plus boiler for heat and steam	Residues pyrolysis + CHP plant, value chain example	Power (3.7 MWe), Heat (12.4 MWth)	Cereals straw. Sunflower straw, Logging residues from final fellings originating from nonconifer trees, Logging residues from final fellings originating from conifer trees		72
Fast pyrolysis	Pyrolysis plus boiler for heat and steam	Residues pyrolysis + Boiler for heat, value chain example	Power (0.1 MWe), Heat (16.4 MWth)	Cereals straw, Sunflower straw, Logging residues from final fellings originating from nonconfer trees, Logging residues from final fellings originating from confer trees		71
Fast pyrolysis	Pyrolysis plus boiler for heat and steam	Fast pyrolysis + CHP plant, value chain example	Power (4.13 MWe), Heat (15.24 MWth)	Residues from further woodprocessing. Stemwood from thinnings originating from nonconifer trees. Stemwood from thinnings originating from conifer trees		70
Fast pyrolysis	Pyrolysis oil and diesel engine for electricity	Fast pyrolysis + Multiple diesel combustion engines, value chain example	Power (5.83 MWe), Heat (8.7 MWth)	Residues from further woodprocessing. Stemwood from thinnings originating from nonconfer trees, Stemwood from thinnings originating from confer trees	Level 6, Prototype system verified	69
Fast pyrolysis	Pyrolysis plus boiler for heat and steam	Fast pyrolysis + Industrial steam boiler, value chain example	Power (0.66 MWe), Heat (31.4 MWth)	Residues from further woodprocessing. Sterwood from thinnings originating from nonconifer trees, Sterwood from thinnings originating from confer trees.	Level 9, System ready for full scale deployment	68
Fast pyrolysis	Pyrolysis plus boiler for heat and steam	Fast pyrolysis + Boiler for heat, value chain example	Power (0.53 MWe), Heat (19.6 MWth)	Residues from further woodprocessing. Sterwood from thinnings originating from nonconifer trees, Sterwood from thinnings originating from conifer trees	Level 8, System integrated in commercial design	87

The technologies covered can be classified in 6 main categories: treatment in subcritical water, syngas platform, gasification technologies, fast pyrolysis, direct combustion of solid biomass, chemical pretreatment, biochemical hydrolisis and fermentation and anaerobic digestion. For a further description of the biomass conversion technologies database please consult deliverable D2.3. The properties collected for conversion technologies belong to several categories:

View details of Dry Batch Digestion (MSW)

	GENERAL PR	ROPERTIES		
Name	Dry Batch Digestion (MSW)	Level of commercial application	Commercial large scale	
Main category	Anaerobic digestion	Important pilots and EU projects	Only to develop innovations	
Subcategory	Plug flow digester	Expected Developments	Mainly in biogas upgarding and in efficiency improvement	
Image url		Current Technology Readiness Level in 2014	Level 9, System ready for full scale deployment	
Year of first implementation	1900	Expected Technology Readiness Level in 2030	Level 9, System ready for full scale deployment	
Estimated number of systems in operation	100	Justify expected Level in 2030	System is commercial - Innovations implemented	
Main operating principle:				
Mainly used for Municipal Solid Waste (MSW	 MSW or comparable substaret 	t is digested over a 2 to 4 week		
period in a closed area. It is a batch process	Temperature can be between 30	D and 60C		

2. Technical properties.

View details of Dry Batch Digestion (MSW)

			TECHNICAL	PROPERTIE	s		
Power	Capacity o (MWe) 1	f outputs (typical values)					
Conversion efficient input)	encies: net retu	rns electricity(GJ/GJ biomass	typical: 0.2	min: 0.1	max: 0.4	typical in 2020:	typical in 2030:
Biogas	(m3/hour) 700) LHV (GJ / m ³) 19.7					
Conversion efficie	encies: net retu	rns fuel(GJ/GJ biomass input)	typical: 0.5	min: 0.2	max: 0.90	typical in 2020:	typical in 2030:
Methane	(m3/hour) 42	20 LHV (GJ / m ³) 32.8					
Conversion efficie	encies: net retu	rns fuel(GJ/GJ biomass input)	typical: 0.5	min: 0.2	max: 0.9	typical in 2020:	typical in 2030:
Data sources used	to define conve	rsion efficiencies in 2014:		Data sou	rces used to de	fine conversion effici	encies in 2020:
Depends on bioma	ss input type!						
External inputs (ne	ot generated b	y the biomass in the conversion	on process)	Data sou	rces used to de	fine conversion effici	encies in 2030:
Power		(kW): 1000					
Heat (useful, not pr	ocess steam)	(KVV): 1000		Conoral			
Indication: experier	nce based data		Yes	General	ata sources for	technical properties	•
Number of possible	full load hours	per year (hours)	5000				
Number of typical f	ull load hours pe	er year (hours)	3500				
Typical Lifetime of I	Equipment (yea	rs)	15				

3. Biomass input specifications

View details of Dry Batch Digestion (MSW)

Biomass input, d	common for th	e technology used: ssible but not common:	BIOMAS HH MSW, House households; Gra Cardoon, Energy Perennial Crops; Straw/stubbles;	S INPUT S shold waste ass, Abando Grasses, 7 Reed Car	PECIFICATIONS ; NACE MSW, Waste not fro oned grassland; Grass, Bior Annual Crops, Perennial Cro nary Grass, Energy Grasses,	om households; NACE Vegetal, Was nass (roadside Verges); ıps; Sorghum, Energy Grasses, Anni Annual Crops, Perennial Crops; Ma	te not from ual Crops, ize,
Traded form	Other (Black	liquor, BMW, PO etc.)				Optional attributes	
Dimensions	Not applicabl	e			Net caloric value	(MJ/kg) min	max
					Gross caloric value	(MJ/kg) min	max
Moisture conten	ıt	(% wet basis) typ	pical 50	max 70	Biogas yield	(m ³ gas/ton dry biomass) 50	% methane 50
Minimal bulk de	nsity		(kg/m ³ , wet ba	sis) 500	Cellulose content	(g/kg dry matter) min 0	max 100
Maximum ash c	ontent		(% dry b	asis) 40	Hemicellulose content	(g/kg dry matter) min	max 100
Minimal ash me	Iting point (= i	nitial deformation temperat	ture)	(°C)	Lignin content	(g/kg dry matter) min 0	max 100
Volatile matter (only for therm	ally trated material, torrefie	ed or	(VM%)	Crude fibre content	(g/kg dry matter) min 0	max 100
steam explosed)				Starch content	(g/kg dry matter) min 0	max 100
					Sugar content	(g/kg dry matter) min 0	max 100
Maximum allow	able contents				Fat content	(g/kg dry matter) min 0	max 100
Nitrogen, N (wtg	%, dry)	Sulphur, S (wt%, dry)	Chlorine, Cl (w	/t%, dry)	Protein content	(g/kg dry matter) min 0	max 100
					Acetyl group content	(g/kg dry matter) min 0	max 100

4. Financial and economic properties.

View details of Dry Batch Digestion (MSW)

FINANCIAL AND ECONOMIC PROPERTIES								
Investments	in 2014 (€):	expected in 2020	expected in 2030	Labour needed	Operators (FTE): 1	Staff and engineering (FTE): 1		
costs	5000000	(€):	(€):					

2.3.6 Database for logistical concepts

The logistical components viewing tool provides information on logistical components as storage, pre-treatment and transportation technologies that are available to handle biomass are accumulated in the logistics table and related tables. The related tables are domain tables to store possible values for selected attributes. There are 220 logistic components stored inside the database, but their number is still growing. The properties collected for logistic components belong to several categories:

1. General properties.

View details of Doppstadt DZ 750 Kombi

	GENERAL P	ROPERTIES	
Commercial name	Doppstadt DZ 750 Kombi	Level of commercial application	Sold in Germany.
Main category	Communition (size reduction)	Year of first implementation in practice	
Subcategory	Shredding	Estimated number of systems in operation since	introduction
Image url	http://bfw.ac.at/fmdb/maschinen.web?kat=1929	Current Technology Readiness Level in 2014	Level 9, System ready for full scale deployment
Most common/suitable applicatio Main operating principle:	ns Pre-treatment of wood.	Expected Technology Readiness Level in 2030 References:	Level 9, System ready for full scale deployment
Trailer platform with own diesel e available data for the input proce took the converter: 1nm3 = 0.4 n veskoar. Slovenian Ecretic Ins	engine. The power requirement is 450 kW. The sssing capacity are in unit nm3/h therefore we h3 (Source: Kakvoostha lesna goriva za dit te _ in Slavanjan)	http://www.woodybiomass.org/PagesRS/www.wo /Microsoft%20Word%20-%20TOR-Annex%203_ http://bfw.ac.at/fmdb/maschinen.web?kat=1929.	odybiomass.org/userfiles/files WE%20Technology_report_Krajnc.pdf and
reality and secondary ma	in oronary.		

View details of Doppstadt DZ 750 Kombi

	TECHNICAL	PROPERTIES		
Energy demand	(MJ/t)	Number of full load hours per year	(h) 180	00
Type of energy needed	Diesel	Maximum load volume of transport system	(m ³) 16	65
Other input demand		Maximum load weight of transport system	(t)	
Pre-treatment efficiency	(output/input)	Typical lifetime of equipment	(years)	5
Input processing capacity	(m ³ /h) 80	Labour requirements pre-treatment	(h/t)	
Storage capacity for input	(t)	Labour requirements storage	(h/t)	
Storage capacity for output	(t)	Labour requirements transport	(h/t)	
		Transportability	Mobi	le

3. Biomass input specifications

View details of Doppstadt DZ 750 Kombi

	BIOMASS INPUT SPECIFICATIONS							
Acceptable biomass input groups	Wood;			Moisture content input (%, wet base)	Minimum	Maximum		
Received (intermediate) biomass	Log wood, fire	ewood		Bulk density input (kg/m ³ , wet base)	Minimum	Maximum		
Minimum particle size input	length (mm)	width / diameter (mm)	height (mm)	Maximum input level of contamination with exogenous material (%, dry base)			
Maximum particle size input	length (mm)	width / diameter (mm) 400	height (mm)	Maximum ash content input (%, dry base)				

4. Biomass output specifications

View details of Doppstadt DZ 750 Kombi

	BIOMASS OUTPUT	SPECIFICATIONS
Indication of follow up process(es)	Transport;	Moisture content output (%, wet base)
Delivered (intermediate) biomass	Wood chips	Bulk density output (kg/m ³ , wet base)
Dimensions	P300: 3,15 mm < P < 300 mm Fine fraction F05: < 5 %	Maximum output level of contamination with exoc
		Maximum ash content output (%, dry base)

5. Financial and economic properties

View details of Doppstadt DZ 750 Kombi

	FINANCIAL AND ECON	NOMIC PROPERTIES	
Specific investment costs of equipment, included auxiliaries	(€)	Transport costs per kilometer	(€/km)
Operation and maintenance costs	(€/t)	Transport costs per tonne	(€/t)
- Calculation method	Effective operation time	Transport costs per load	(€)
Storage costs	(€/t)	Transport costs fixed	(€)
Loading costs	(€/t)	Infrastructure needed	None
Unloading costs	(€/t)		

2.3.7 Value chain sustainability

In this part of the toolset information is provided on the sustainability framework for criteria and indicators for biomass delivery chains elaborate in WP5 of the project. The work in WP5 on sustainability of biomass delivery chains for the bioeconomy was started with a benchmark analysis of existing sustainability schemes (D5.2) .This was then followed up by an inventory of how sustainability issues are currently addressed in bioeconomy value chains in a selected number of countries (D5.3). The outcome of both evaluations was used to design the eventual sustainability framework for Criteria and indicators for biomass delivery chains which is described in D5.4

A	B	B C		D	Formula Bar	F	G	н	1	T	К	1	M	
								J	mbit	ion		-		
					Indicator		Basic s	et			Advance	ed set		
Theme	Criterion	#		Indicator	Description	Minimum requirement	Comparative (non-renewable reference)	Comparative (biomass reference)	Descriptive	Minimum requirement	Comparative (non-renewable reference	Comparative (biomass reference)	Descriptive	
		1.2		Secondary Resource Efficiency	Heating value of biomass output divided by heating value of secondary resource; applies to conversion of residues and wastes			~		~				
		1.3		Energy Efficiency	Cumulative energy requirements (all inputs based on LHV primary energy) compared to outputs		~			~				
		1.4		Functionality (Output service quality)	Economic value of outputs (€/G) and +€/ton), compared to economic value of heat which could be produced from burning (dried) primary inputs (reference = heat from NG ~ 10€/G); economic values excluding taxes, for industrial customers						~	~		
	2.1 Life Cycle-based CO ₂ eq			Life Cycle-based CO ₂ eq	GHG emissions during the whole value chain (i.e. feedstock collection , logistics, pretreatment and conversion, distribution and end-use phase) in relation to the final output (combination of electricity, useful heat, biofuels & biomaterials)	~				~				
В	2	2.2		Other GHG emissions	GHG from carbon stock changes incl. soils (if applicable)		1	~		~				
4.1	N C	C&I land-based	feedst	ocks C&I residues waste	s /91 / 14			111			8		1	

A subset of the S2BIOM sustainability indicators were also calculated for conversion technologies (included in the S2BIOM technology database) & biomass type combinations and these can be viewed and downloaded in an excel database.

The environmental indicators calculated include energy efficiency (MJprim/MJout), direct life-cycles GHG emissions (g CO2/MJout), air emissions (SO2eq g/MJout and PM10 g/MJout), land use efficeincy (m2/GJout) and employment (pers/TJout) for the average EU situations in 2020 and 2030 (based on PRIMES REF). These indicators were calculated with the GEMIS system updated with the conversion technologies data from the S2BIOM database (GEMIS 4.95).

2.4 Full chain assessment tools

In this part of the S2BIOM toolset the more integrative and advanced assessment tools developed in the project are placed.

There are 3 tools included:

 Bio2Match tool: It provides support to users in finding the best match between a certain type of biomass with specific characteristics as specified in the cost-supply database (WP 1) and the conversion technologies (WP2). Detailed user instruction for the Bio2Match viewing tool are provided in Chapter 5 of this report. The database for the Bio2Match tool consist of the 3

databases described in the former, additional information on the physical and chemical composition of the biomass and an additional knowledge database providing the rules according to which a biomass type matches with a biomass conversion technology and/or with a pre-treatment technology to adapt the physical composition of the biomass to the requirements of a specific conversion technology.

- 2) BeWhere model output viewing tool: This tool supports the presentation of the assessment results performed in S2BIOM with the BeWhere model. BeWhere model supports the development of EU-wide and national strategies to design and evaluate an optimal network of biomass delivery chains. The basis of this tool is a techno-economic spatial model that enables the optimal design and allocation of biomass delivery chains (at national level) based on the minimization of the cost and emissions of the full supply chain taking account economies of scale, in order to meet certain demand (as assessed in WP 7 (see also menu 'General data' -→ 'Biomass demand'.).
- 3) LocaGIStics tool: This tool enables the user to design and evaluate biomass delivery chains. The locaGIStics tool was developed as a results of the work done in WP3 to develop a formalised stepwise approach for the implementation of optimal logistical concepts adapted to specific regional circumstances. The LocaGIStics tool has been made operational for 2 regions in Europe: Burgundy and Spain. Before using the tool we recommend to consult the detailed user guidelines in Chapter 6.

2.5 S2BIOM report downloads

In this part of the S2BIOM toolset people can find all S2BIOM reports which can be downloaded here.

S2Biom Tools for	or biomass chains
Home General data Riomass chain data R	nols 💌 S2RIOM Report downloads Data downloads 🕷 Maintain 🕷
S2BIOM Report downloads	
S2BIOM Report downloads by work package	
Welcome to the reports download section of the S2BIOM toolset!	
Underneath you find links to download all reports elaborated in the	S2BIOM project. The material is organised according to work package.
WP	Reports:
	D1.1 Roadmap for regional end-users on how to collect, process, store and maintain biomass supply data
	D1.5 The data base of biomass cost supply data for EU 28, Western Balkan Countries, Moldavia, Turkey and Ukraine
	D1.8 A spatial data base on sustainable biomass cost-supply of lignocellulosic biomass in Europe - methods & data sources
wr'i Sustainable biomass cost-supply	D1.7 Best practice guidelines on the maintenance and regular up-date of the biomass cost supply data for EU, Western Balkan Countries, Moldavia, Turkey and Ukraine
	D1.8 Atlas with regional cost supply biomass potentials for EU 28, Western Balkan Countries, Moldavia, Turkey and Ukraine.
	D2.1 A method for standardized biomass characterisation and minimal biomass quality requirement for each biomass conversion technology
WP 2 Existing and future biomass conversion technologies	for D2.2 A selection method to match biomass types with the best conversion technologies
energy and biobased products	D2.3 Database of biomass conversion technologies
	D2.4a; Explanatory note accompanying the database for standardized biomass characterization.
	D3.1 Review report of the main components such as storage, pre-treatment and transportation technologies
	D3.2 Report with an overview of new logistical concepts and conceptual designs, and a theoretical assessment of their economic performance and GHG emission impacts
WP 3 Optimal logistics for sustainable non-food biomass	D3.4, D3.6 Results of logistical case studies - cover report
feedstock delivery chains	D3.4+D3.8 Annex 1 - Burgundy logistical case studies
	D3.4+D3.8 Annex 2 - Aragon logistical case studies
	D3.4+D3.6 Annex 3 - Finland logistical case studies
alterra wur pl/web/gwect/report_downloads	[D3.5 Formalised stepwise approach for implementing logistical concepts
terra.wurniy.web/guesy.report-downloads	the database that will include all data accumulated in the project and will be used by the

2.6 Data downloads

In this part of the toolset the user can download all data files and country reports for all 37 countries covered in the S2BIOm project. The downloads include excel files with the biomass cost-supply data at country level (Nuts 3 data) for the different potentials and years, the country specific data on policies contained in the policy database, road maps for lignocellulosic biomass and relevant policies for a biobased economy in 2030 and factsheets per country benchmarking the country policy options for long term mobilization of biomass for the biobased economy.

		L.	· · ·		-
					Admin 💌 My Sites 💌 🕕 Berien Elbersen 💌
S2Biom T	ools for biomass chair	ns			
Home General data 💌 Biomass chai	n data 👻 Tools 👻 S2BIOM Report downloads	Data downloads 💌	Maintain 💌		
Data downloads / Country downloads					
Data downloads by country		General downloads			
Name	Cost-supply data		Policy data	Roadmaps	Factsheet
Austria Beloium	Cost supply AT Cost supply BE		Policy AT Policy BE	RM AT RM BE	Factsheet AT Factsheet BE
Bulgaria	Cost supply BG		Policy BG	RM BG	Factsheet BG
Croatia	Cost supply HR		Policy HR	RM HR	Factsheet HR
Cvprus	Cost supply CY		Policy CY	RM CY	Factsheet CY
Czech Republic	Cost supply CZ		Policy CZ	RM CZ	Factsheet CZ
Denmark	Cost supply DK		Policy DK	RM DK	Factsheet DK
Estonia	Cost supply EE		Policy EE	RM EE	Factsheet EE
Finland	Cost supply FI		Policy FI	RM FI	Factsheet FI
France	Cost supply FR		Policy FR	RM FR	Factsheet FR
Germany	Cost supply DE		Policy DE	RM DE	Factsheet DE
Greece	Cost supply EL		Policy EL	RM EL	Factsheet EL
Hungary	Cost supply HU		Policy HU	RM HU	Factsheet HU
Ireland	Cost supply IE		Policy IE	RM IE	Factsheet IE
Italy	Cost supply IT		Policy IT	RM IT	Factsheet IT
Latvia	Cost supply LV		Policy LV	RM LV	Factsheet LV
Lithuania	Cost supply LT		Policy LT	RM LT	Factsheet LT
Luxembourg	Cost supply LU		Policy LU	RM LU	Factsheet LU
Malta	Cost supply MT		Policy MT	RM MT	Factsheet MT
Netherlands	Cost supply NL		Policy NL	RM NL	Factsheet NL
Poland	Cost supply PL		Policy PL	RM PL	Factsheet PL
Portugal	Cost supply PT		Policy PT	RM PT	Factsheet PT
Romania	Cost supply RO		Policy RO	RM RO	Factsheet RO
Slavakia	Contample DV		Delian CV	DM CV	Footback CV

3 Regulatory and financial framework: Policy viewer: detailed user instructions

The Regulatory viewing tool is accessible through the S2BIOM toolset via de tab 'General data' \rightarrow 'Regulatory and financial framework'.

The database was populated and the tool was developed simultaneously as part of WP 6. In the following instructions are provided on how to use the tool and how to also incorporate new data in it.

3.1 Instructions on how to use the database

For access to the database the Step Guide below should be followed:

Go to the tab Catalogue of Instruments & Measures

S2BIOM	\sim		
About S2BIOM	Catalogue of Instruments & Measures	Add Instrument & Measures	My Drafts

Country/Region:

Choose 'European Union' in the first box, and specify the country in the second box. For EU regulations, select 'EU28' instead of a specific country. It is also possible to further drill into a region within a country.

	Country/Region	
~ ~	European Union	\checkmark
A	– None –	\sim

You can also make other selections for the query, e.g.

- type of Instrument or Measure (Economic, Regulatory, Voluntary),
- topic targeted (e.g. energy, agriculture, ...)
- Feedstock type targeted
- Product type targeted
- Part of the value chain

Click on apply

In the table Click on the short name of the I&M that you want to see

You will then see a factsheet with key information, contact references and advanced information

If you wish to update certain information, or create new Instruments/Measures, you need to log in through your account (Be aware; THIS is not the same account as for the S2BIOM toolset log-in!!).

1. Create account

See right on the top: click on "create new account"

Username or e-mail	*Password *
Create new account Req	uest new password
Log in	

follow instructions to create an account

2. Log in

'Log in' with your username or e-mail and your password and click on Log in

3.2 How to update Instruments & Measures in the Database?

- a. Access to be database: see introduction
- b. In the table Click on the short name on the I&M that you want to update

Short name of Instrument or Mea	sure ISO	Country/Region	Type of Instrument & Measure
Biofuel quota	FR	FRANCE	Substitution Obligation, Tax Reduction
Community water policy	FR	FRANCE	Requirements
Environmental code	FR	FRANCE	Requirements, Permitting

Go to tab New draft

Change the text in the fields you want to update

Click on 'Save' at the bottom of the page to save the entered data.

Your adapted I&M will be saved for review.

Once reviewed by the administrator (VITO), the updated factsheet will be published on-line.

	Moderation state
	Needs Review 💙
	Set the moderation state for this content.
Save View changes	

3.3 How to add new Instruments & Measures in the Database?

Go to tab 'Add Instruments & Measures'

Fill in at least all mandatory fields marked with a red asterisk *

In subtab Key Information:

- Short name of Instrument / Measure*
- Reference Code
- Country/Region* (you can drill down to NUTS 3 level if needed)
- Description*
- Goal/Aim*
- Type of instrument* (you can add several)

- Sector/topic targeted*
- Status*
- Connection with EU policy
- (Trade Relevance) (mainly important for the BioTrade2020+ project)

governments	t or Measure can be broadly interpreted as a policy, law, method, mechanism or action, used by the profit or non-profit sector or society as a whole to boost the development of biobased economies.
Instruments a	nd Measures can address e.g.;
i. mormation	and education (e.g. awareness campaigns, training, skill building,) nd financial instruments (e.g. support schemes, subsidies,)
iii. research. d	evelopment and deployment activities (e.g. research clusters, research agenda's)
iv. regulatory	(binding) instruments (e.g. legislation, policy)
v. voluntary (10n-binding) initiatives (e.g. position papers, strategies,)
You can subn	it as many Instruments and Measures as you like. Fields marked with '*' are required others are optional
 Key Informa 	ion
✓ Key Informa Short name of	tion Instrument & Measure *
 Key Informa Short name of 	tion Instrument & Measure *

And add relevant information in the following subtabs: to do so click on the successive tabs and fill in the respective fields (as far as relevant).

Contact References	
Advanced Informatio	n
Comments	
Revision information	Revision log message
	Created by janssend.
	Provide an explanation of the changes you are making. This will help other authors understand yo
	Moderation state Needs Review
	Set the moderation state for this content.

Subtab Contact References

- Full name of Instrument & Measure (English native language)
- Links (you can add several)
- Responsible authority + contact (website) •
- Completed by ... (company name) & on ... (month & year) •
- Acknowledgement (if you build on info from other projects, e.g. RES-LEGAL) •

Subtab Advanced information

- (Secondary goal) •
- Feedstock type targeted (you can add general feedstock categories, and specifically select specific feedstock types if relevant)
- Product type targeted (click for which product type the measure is relevant) •
- Value chain (click for which part of the value chain the measure is relevant) •
- (Enterprise scale) •
- (Connection with national policy) •
- Year I/M started, last amended, ended

D4.1

Subtab Comments

- Overall comments
- Environmental sustainability requirements (e.g. GHG, land use, emissions, ...)
- Efficiency requirements (e.g. CHP requirement)
- Material hierarchy (e.g. exclusion of certain materials because of other uses)

Click on 'Save' at the bottom of the page to save the entered data.

Your I&M will be saved for review.

Once reviewed by the administrator (VITO), the factsheet will be published on-line.

4 Biomass supply and cost-supply viewers: detailed user instructions

4.1 Biomass supply viewer

General:

The biomass supply data viewer enables the user to make selections of biomass types for which data can be displayed in a map in relation to amount of biomass available per year and potential type combination. The user can select the regional level (Nuts 0(=national) to Nuts 3) at which the data need to be displayed, the year and the different types of potentials. In addition the user can also choose whether the data needs to be displayed in absolute levels (Kton dm or TJ), area weighted (Kton dm/km2 or GJ/km2) and weighted average road side cost (€/ton dm).

The user can select the scenario year and the potential type to be displayed on the map.

NOTE 1: Details on the relationship between cost levels and supply can be obtained from the 'Cost supply viewer' also accessible via the main 'Biomass chain data' entry in the main menu of the S2BIOM tool set.

NOTE 2: All data viewable in this tool can be downloaded per country in excel format via the main menu item 'Data downloads'- \rightarrow 'Country downloads'.

NOTE 3: The cost levels displayed here refer to the **road side cost** of the biomass. Road side cost refer to all biomass production collection and pre-treatment cost up to the road where the biomass is located. The road side cost are usually a fraction of the total 'at-gate-cost.' Cost levels assessed here do not refer to market prices!

Getting started:

The starting screen below shows the supply viewer when opened. It shows biomass availability at national level (Nuts 0) for stemwood from final fellings in all European countries covered by S2BIOM.

User interaction:

To <u>operate the tool</u> one starts specifying the choices in the top left hand pane ('Administrative level'), shifting to the right to 'Scenario', then choosing 'Category', 'Subcategory', 'Type' and 'Potential'. In all these panes one can select one item by clicking on it.

The most detailed spatial level is the Nuts 3.

On the <u>top right</u> one can select the entities and type of information to be displayed per biomass type in the map. Standard amounts are displayed in Kton dm per region. By clicking on the tab '**energy value'** one can map results in TJ. The biomass levels can also be displayed in Kton or TJ per km2 by clicking on the tab '**area weighted**'.

Cost levels per type of biomass can also be displayed. These cost refer to the **road side cost** of the biomass. To display these click on the top right tab '**cost**'. Road side cost refer to all biomass production collection and pre-treatment cost up to the road where the biomass is located. The road side cost are usually a fraction of the total 'at-gate-cost.' Cost levels assessed here do not refer to market prices!

In the bottom right corner users can get further information on what selections are displayed in the map. This is displayed by clicking the tab 'Curent selection'.

User can also click in the map on one region. For this region the levels displayed in the map are presented in the bottom right pane under the tab '**Identify results**'.

Under the bottom right tab 'Selected regions' one can make selections and remove selection for regions. These region selections can then be used as preselected regions for which the biomass types present can serve as the pre-selection used in the **Bio2Match tool**. To use these pre-selected regions in Bio2Match first select the region of interest. Then click on the bottom right tab 'Lookup biomass types in

Biomass and technology matching tool'. After click the Bio2Match tool is opened for the pre-selected biomass-region combinations.

4.2 Biomass cost-supply viewer

Introduction:

The cost-supply data viewer enables the user to make selections of biomass types for which cost levels can be displayed in a cost-supply graph. The graph displays the total accumulated biomass (ordered from cheap to expensive) against the average road side cost level for the country/countries and scenario years selected.

The amount of biomass is displayed on the y-axis and the road side cost level on the x-axis.

Users can select one or more countries (using 'ctrl' and 'Alt' tab on their keyboard), scenarios and biomass types for which they want to display the cost-supply relation. To select more than one country, scenario year or type use the 'ctrl' or 'shift' and select.

The user can select the potential type and one or more scenario years to be displayed in more curves in the same graph.

NOTE 1: Details on the average cost levels for individual biomass types per region/country can be obtained from the 'Supply viewer' also accessible via the main 'Biomass chain data' entry (choose 'costs' on the top right).

NOTE 2: The cost levels displayed here refer to the **road side cost** of the biomass. Road side cost refer to all biomass production collection and pre-treatment cost up to the road where the biomass is located. The road side cost are usually a fraction of the total 'at-gate-cost.' Cost levels assessed here do not refer to market prices!

Getting started:

The starting screen below shows a cost supply relationship covering all accumulated biomass (for all types) in all European countries covered by S2BIOM (y-axis) against the road side cost levels (x-axis).

Different curves are only displayed for different scenario years.

User interaction:

To <u>operate the tool</u> one starts specifying the choices in the top left hand pane ('**Countries**'), going down to '**Scenario**' pane on the left side, and then moving to '**Type**', '**Potential**' and finally '**Unit**'. In all these panes one can select one item by clicking on it or one can select more items by clicking in combination with the '*ctrl*' (non-continues list) and '*shift*' (continues list) tab.

Further support on the user interaction functions can be derived under the '?' symbol in every pane.

Country: Select 1 or more countries. More countries can be selected by using the *'ctrl'* (non-continues list) and *'shift'* (continues list) tab.

Scenario: Select 1 or more scenario years to be displayed as separate curves in one graph. More scenario years can be selected by using the *ctrl* (non-continues list) and *shift* (continues list) tab.

Type: Select 1 or more biomass types to be displayed as accumulated biomass supply. More biomass types can be selected by using the *ctrl* (non-continues list) and *shift* (continues list) tab.

Potential. Select one or more potential types for which cost-supply curves can be displayed in one graph. More potentials can be selected by using the *ctrl* (non-continues list) and *shift* (continues list) tab.

Unit: Select the unit in which the cost-supply relation needs to be presented. A choice can be made between Euro/kton dry matter (€ per kton biomass in dry matter) or Euro/GJ (€ per Giga Joule) referring to the energy value of the biomass using heating value conversion factors for dry biomass. The latter choice for energy value

is chosen to make the internal comparison of biomass road side cost levels more comparable between the different types of biomass.

5 **Bio2Match tool: detailed user instructions**

5.1 General information:

This tool guides the user to the optimal match between biomass resources and conversion technologies. Each conversion technology has specific biomass input requirements, while the composition and characteristics of biomass at roadside varies widely. Some biomass types can be used in many different technology options, while others are hard to process or will need extensive pre-treatment. The matching tool uses extensive information from the S2Biom databases to show the user which types of biomass can be processed by which technologies to certain endproducts, and thereby helps the user to find an optimal supply chain.

5.2 Getting started:

The figure below shows the starting screen of the user-interface of Bio2Match, which contains eight different panes. In the figure below the panes are numbered 1-8 for clarification purposes.

S2Bior	n Tools for b	piomass chains	S		My Sites 👻 🕕 Demo User 😴
Home General data 💌 I	Biomass chain data 🔳 🛛 Tools 💿	Strategies, roadmaps & impleme	intation plans 💌		
Tools / Biomass and technology mat	tching tool				
Select rows and columns		Match		7	Matching characterist ?
≓ Switch rows	s and columns	Name	Complete mix digester state of the art 2014	Dry Batch Digestion (MSW)	► Anaerobic digestion
Columns - Conversion. ?	Rows - Biomass types ?	Rice straw	0	0	Biochemical treatm
Anaerobic digestion	Caricultural residu	Cereals straw	0	0	Physical treatment
Biochemical treat	Grassland	Oil seed rape straw	0	0	
Direct combustion	Municipal waste	Malze stover	0	0	(5)
▶ D Fast pyrolysis O	Cher land use	Sugarbeet leaves	0	0	
Gasification techn	Primary productio	Sunflower straw	٥	0	Product groups
D Treatmers in subc. 0	C Production from f. O Secondary residue. O Secondary residue. O D Waste from wood O		3		redentry 0 fuel 0 product 0 Regions
		Matching overview	- Comm	3	Legend
		rvame	Group		Findamental match
			_		No match
			4		Nos Nos Nos Nos Nos Nos

The left two panes (#1 and #2) are for the selection of biomass types and technologies to match. You can select any number of biomass types and conversion technologies that you are interested in. The central screen (#3) then shows which

technologies match to which types of biomass, based on the information in the S2Biom databases.¹ Pressing the button 'switch rows and columns' switches the position of panes #1 and #2 and switches the columns and row in pane #3, so you can select your preferred viewing option. You can click on a single biomass-

In pane #5 the characteristics or feedstock properties that need to be taken into account for the match can be selected. Pane #6 is a product filter, with which you can limit the amount of technologies displayed on the basis of the products that you are interested in. Pane #7 is a region filter. It is normally inactive, but is automatically activated when the tool is accessed through one of the other S2Biom tools, the 'Biomass supply database'. It limits the amount of biomass types displayed on the basis of their availability in the region that you selected in the Biomass supply database. Pane #8 is a legend to panes #3 and #4.

technology combination in pane #3 to find out why a feedstock does or does not match to a certain technology. This is displayed in the matching overview, pane #4.

Most of the panes contain a "?" button, which gives a short description of that pane when you hold the pointer above it. The section below describes the functionalities of each pane in more detail.

1& 2 The conversion technologies and biomass types selection panes (1 & 2)

In the conversion technologies you can select which pane technologies to include in the match. The figure on the right side shows the partly expanded list of conversion technologies. The list is divided into seven groups, which are further broken down into individual types of technologies. You select can groups or individual technologies, as shown in the figure. If a technology name is too long for the box, you can click on it and a pop-up box appears with the full name. The conversion technology list is linked to the conversion technologies database, so you can find more details about the technologies

¹ For the methodology behind the matching, the reader is referred to the separate document 'Bio2Match general description and methodology', which is available in the user documentation.

there.²

In the biomass selection pane you can select which biomass types to include in the match, in the same way as in the conversion technologies pane.

3 The match pane

The match pane shows you which of the selected biomass types match to which of the selected conversion technologies. A green check ("V") symbol indicates that there is a match between the biomass type and the conversion technology. In other words: the technology can process that type of biomass. A red error ("X") symbol indicates that a biomass type and technology do not match, so that biomass type cannot be processed by that conversion technology. A yellow alarm ("!") symbol indicates that in principle that type of biomass can be processed by the conversion technology, but beforehand some form of simple pretreatment is necessary, specifically drying or densification.

Match ?					
Name	Thinnings from conifer tr	Cereals straw	Unused grassland cuttings		
Wood chips to pyrolysis oil	Ø	8	8		
Agricultural residues to pyrolysis oil	٢	0	0		
Dry Batch Digestion (MSW)	8	۸	۸		
Syngas to FT-diesel	۸	0	0		
Ethanol from lignocellulose (dilute aci	۸	0	۸		
Grate boiler with straw for heat		٢	۸		

You can obtain more detailed information about a specific match by clicking on one of the symbols, after which the matching overview pane (#4) shows the details of that match.

4 The matching overview pane:

The matching classification system is visualized in pane #4 with four blocks per property, in which green blocks represent the biomass quality that the technology can handle. When only the left block is green, that means the technology can handle only

Matching overview for biomass type "Cereals straw" and conversion "Syngas to FT-diesel"			
Name	Group		
Ash content	Thermal conversion		-
Ash melting behavior (DT)	Thermal conversion		
Bulk density, BD	Physical treatment	©	
a	Thermal conversion		

feedstock of class 1 quality, when all four are green the technology can also handle lower quality classes. The matching symbol represents the actual quality of the selected biomass. If the symbol is positioned in a green block there is a match and the label turns green, if it is situated in a red block that means the technology cannot handle that feedstock quality and the label turns red in the case of a fundamental property or yellow in the case of a physical property.

In this way you can quickly identify which biomass property is responsible when a biomass and technology do not match. In the example of a syngas to Fischer-Tropsch diesel process (gasification followed by conversion) with cereal straw as feedstock, as depicted in the figure above, it can be seen that the ash and chlorine contents and the ash melting temperature are all responsible for the fact that there is no match.

Another outcome could be in the case of a match, in which you may find that a certain biomass type is of such high quality that it would be less than optimal to use it for a certain technology, because another biomass type of lower quality could also be converted by that same technology. This would make it useful to also investigate the details of a match when it is a positive one. An example of that is shown in the figure below, of the match of a residue conversion process ("agricultural residues to pyrolysis oil") with stemwood from conifer trees. The technology can handle much lower quality biomass than the conifer stemwood, as can be seen from the ash content and ash melting behaviour.

The figure below also shows how the matching tool indicates that a specific property was not taken into account. Then the check sign in the bar becomes grey, as is the case for the bulk density in this case.

Matching overview for biomass type "Ste	mwood from thinnings origi	nating from conifer trees" and conve ?
Name	Group	
Ash content	Thermal conversion	
Ash melting behavior (DT)	Thermal conversion	
Bulk density, BD	Physical treatment	○
Cl	Thermal conversion	

The default setting of the matching overview pane is to only show the basics of the match. However, as a user you can choose to display more information, such as the ranges of each class.

Important to note is also that the matching information is based on typical values for biomass types, while in practice the properties of biomass depend heavily on the

growing and harvesting conditions (soil, fertilizer, season of harvest, etc.). Therefore you can also choose to display the best and worst-case values of the biomass properties. This can be done by clicking on the overhead bar of the matching overview pane and then selecting additional columns, as shown in the figure below.

olives tree plantations" and conversion	"Fixed bed for CHP"		/	-	Ash content	a (ralls (ma + harminal) (ma)
	Unit	Actual	Technolog	Ŧ	Suitability for	Name
0	Classes 1: <=1; 2: 1-3; 3: 3-10; 4: >10 w-% dry.	3	2	12 So	rt Ascending	Group
	Classes 1: >=1200; 2: 1000-1200; 3: 800-1000; 4: <800 °C.	1	1	↓ ^A So	rt Descending	C Unit
0	kg/m3 ar	226 073750	150		lumns 🕨	Worst Btch
0	Classes 1: <=0.02; 2: 0.02-0.1000000000000001; 3: 0.1000000000	2	2		8 No ma	Actual Technology demand
	mm	0	63		O Not tal	Best
0	w-% ar	32	20	-	🎤 Missin	Treatment Match
				Colu	umn sele	ction

5. The matching characteristics pane

A feature that the tool contains is that you can select which properties need to be taken into account for the matching. If you find that for your specific case (be it technology or feedstock) a certain property is not important, you can unselect that specific characteristic in the dropdown menu in pane #5, after which the tool recalculates which technologies match to which types of biomass without that property being taken into account. The characteristics are divided into four groups. One group for the properties related to anaerobic digestion technologies, one related to biochemical treatment, one

to thermal conversion (including the other five conversion technologies groups: direct combustion, fast pyrolysis, gasification, syngas platform and treatment in subcritical water), and one to physical pretreatment, in order to reduce moisture content or increase the bulk density of the biomass. By default the tool selects all the fundamental properties, and no physical properties.

6. The product groups pane

With the product groups filter (pane #6) you can select which types of products you are interested in. For

Product groups	
electricity	Ø
fuel	O
heat	Ø
product	Ø

example only heat or electricity, or fuels or biobased products. The filter then automatically selects only the technologies that are able to produce those specific products. Irrelevant technologies in the conversion technologies pane become light grey, and can no longer be selected for a match.

Important to keep in mind when selecting one or two product groups only is that there is often a thin line between different products. For example ethanol can be seen as both a fuel and a biobased product, while some technologies produce multiple products in parallel.

7. Regions pane

The last feature is a regions filter. This is a part of the tool that is linked to another tool on the S2Biom website, the biomass supply database.³ This database contains availability data of all the biomass categories that are in the Bio2Match tool as well. You can select a certain region (or multiple regions) in the biomass supply database and then link to Bio2Match, which then automatically filters the biomass types that are relevant for those specific regions. The regions that were selected are then mentioned in pane #7, and can be unselected from this pane as well.

³ Under the 'Biomass chain data' tab in the websites top menu, click 'Biomass supply'.

6 Full chain assessment tools; BeWhere viewing tool and LocaGIStics: detailed user instructions

6.1 BeWhere output viewing tool

The model BeWhere itself cannot be used by the end-users. Instead the endusers can view & download the pre-run scenario results of BeWhere through the S2BIOM toolset. The users can choose in the viewing tool the scenario specifications for which to view results in the underneath menu. In the left pane you can specify and download BeWhere sollutions for heat and power installations and in the right pane for biofuel installations.

Bewhere						0
			BeWhere results			
Product: Heat and	Power		Product: Biofuel			
Feedstock:	Crop	Ψ.	Feedstock:	Forestry	Ŧ	
Carbon cost:	150	Ŧ	Biofuel support:	10		
Fossil fuel factor:	1.50	Ŧ	Fossil fuel factor:	1.50	T	
Click here to downlo	oad the pdf		Click here to downle	oad the pdf		

The downloadable BeWhere results are available in the S2BIOM data directory and are selected by the user by clicking the menu and specifying the selection criteria.

6.2 LocaGIStics

General information:

This tool supports the user to design biomass delivery chains at regional level (implemented for Burgundy and Spain) and to analyse in a comparative way (for different biomass delivery chains) the economic and GHG emission and mitigation potential and the spatially explicit land use and environmental implications. It uses data about biomass supply, different biomass conversion and pre-treatment technologies and novel logistical concepts of biomass hubs and yards.

Getting started:

The starting screen below shows a map of the selected country and region.

In the map displayed the grey diamonds refer to suggested power plant locations as analysed by the BeWhere tool analysis (see in the main user interface the 'Tools' --->'BeWhere'). Each of these suggested locations refers to one power plant to which the biomass is directly sourced from the field without making use of intermediate collection points.

In the LocaGIStics tool the user is now invited to design one or more biomass delivery chains choosing the size and location of the power plant while designing the chain with or without intermediate collection points.

Use of LocaGIStics tool:

To operate the tool one starts specifying the choices in the top left hand pane ('**Countries**'), going down to the '**Variants**' pane on the left side, and then moving to the top right panes specifying '**Biomass types**' '**Biomass conversion plants**' and finally the '**Intermediate collection points**'.

Countries, Areas of interest, Cases pane:

You can choose these panes to specify the case study:

Variants pane: Click

3,839,580

3.926.708

2,462,190

3,782,481

5,096,999

4,430,633

4,462,601

3 058 489

Name T

102

103

104

Variant 1

Variant 2

Variant 3

Variant 4

Variant 5

on	the	'Create'	button	and	give	а	na
						•h:	ain

Indirect N2

148 446

141,965

126,353

148,446

139,631

0

0

🖻 🗙 🥒 🔳

D × / E

9×/=

0×0 =

🖣 🗙 🥒 🔳

🗈 x / 🔳

🖻 🗙 🥒 🔳

Direct N2O

77,310

88.637

0

157,380

77,310

87,322

0

4,019,948

4.073.814

0

4,945,974

4,019,948

4,009,354

0

0

e a name for the variant of the chain you are going to design (e.g. 'only straw' or 'mixed straw and Miscanthus'). Then click on the '*Submit*' button. You can see that the variant that you have just created is now highlighted with a yellow bar. If needed you can edit the

name of the variant using the 🦉 icon.

Financial profit Energy profit Net GHG a ... Change in....

37.337

38,107

35.477

39,348

41,435

41,474

41,814

39.651

377,532

385.318

359,421

412,430

432,929

433,179

436,725

415.562

Note: Always check later on if the correct variant is still chosen (highlighted) because this might sometimes be accidentally changed in this prototype e.g. after a calculation.

Note: Unfortunately there is a limit to the width of the columns depending on the size of your screen. You can change the size of the columns in each pane by putting your pointer on the border of the column and dragging it to one side. This way you can better read the heading and/or the data.

Biomass types: This section shows the available biomass types (in the Burgundy

Name	Availability (%)	Field - ICP moistu	ICP - PP moistur	Higher heating value	Biomass costs	Energy use biomass at roadside	
Straw	33	14	9	17	45	0.5	0
Miscanthus	0	15	10	18.5	8.82	0.84	0

case these are straw and Miscanthus). You can choose the actual

percentage of a biomass type that you want to include in your analysis (this could be lower than the maximum). The choice could be e.g. to use only straw, then you need to set the percentage of the other biomass types (now only Miscanthus is included) to '0'. Use the \checkmark icon to edit the biomass availability and related properties (field moisture % and moisture content after intermediate collection/pre-treatment). After editing click on '*submit*' button.

Note: All biomass properties have a default settings (in this case 33% straw and 0% Miscanthus), but can be changed by the user.

Note: The map shows the biomass availability in a grid pattern. Deep coloured grids have higher biomass availability then light coloured grids. The 'active' biomass type (highlighted with the yellow bar), for which a biomass conversion plant is selected is shown on the

map. In the Burgundy case straw is yellow and Miscanthus is purple.

Note: One can also hide the biomass map in order to see the topographical map of the area containing roads, cities, etc.

Biomass conversion plants: In this pane you define the power plant location and demand size (in this example the demand size is chosen to be 30,000 ton of biomass, and only small size deviations of about 10% can be made). By clicking the '*Create*' button one can add a new power plant and specify its name and size in terms of amount of biomass (in ton dry matter) processed on a yearly basis. After clicking '*Submit*' a power plant is located on the map (red square) in the centre of the region.

Name Site (ten DM) Amount (ten DM) Einansiel profit Einargu profit Net GHC avoided	Biomass conversion plants											
Name Size (tori bin) Aniount (tori bin) Tinanciai proint Energy proint Net Grid avoided			Γ									
Power Plant 1 30,000 30,032 3,782,481 412,430 39,348 💥	0	0	5									

You can now move the red square to the location on the map where you want to locate the plant.

Note: The suggested locations by BeWhere (grey diamonds in the map) can be used as a reference point, and the biomass density shown on the map (brown grids) are also meant to be a guidance.

Intermediate collection points: In this pane the intermediate collection points

Power Plant 1 30,032 709,961	×	0	

supplying to the Biomass conversion plant that was just designed in the former pane can be defined. The first step is to click on *'Create'* and then assign a name. Then click on *'Submit'*.

You will see a red circle on the map indicating the location of the intermediate

collection point. You can now click on this red circle and drag it to the position where you want the intermediate collection to take place (most likely the place selected should be where the biomass is most concentrated spatially so that you obtain short transport distances to the intermediate collection point). If you want the intermediate

collection to coincide with the power plant itself you can click on the icon in the 'Intermediate collection point' pane. This definition of intermediate collection points can be repeated for a second intermediate collection point.

Note: a minimum of one and a maximum of two intermediate collection points per power plant needs to be selected.

After this step more power plants can be added together with their collection points by repeating the definition steps in the 'Biomass conversion plants' and 'Intermediate collection points' panes.

<u>Calculation of results:</u> If the user thinks all biomass types, power plants and intermediate collection points have been defined properly the calculation of the results can be generated. To do this the user needs to go back to the 'Variants' pane and press the calculator is icon.

Note: Only press the icon once. The system then starts to calculate. This can take a few minutes. You will get the following screen:

Do not press again on the calculator but wait until the tool generates the calculation results: These results will appear in several places:

- 1) A grid pattern will appear on the map indicating the grid cells sourcing the defined power plants.
- 2) In the '**Variants**' pane the *financial profit, energy profit* and the *GHG avoided* is specified as assessed for the defined biomass conversion plants.
- 3) In the '**Biomass conversion plant**' pane the *financial profit, energy profit* and the *GHG avoided* are quantified but specifically for the biomass conversion plant

<u>Calculation of new variants and comparison of performance of biomass</u> <u>delivery chains:</u> To make a new design there are two options:

- In the 'Variants' pane click on 'Create' and give your new design a name
- In the 'Variants' pane click on the former variant created and click on the copy
 icon. The former design can then be adapted with new specifications by going through the definitions steps in the 'Biomass Types', 'Biomass conversion plants' and 'Intermediate collection points' panes as described above.

If a Variant or a plant specification or an intermediate collection point needs to be removed just click on the \times icon.

Per design more biomass conversion plants and per plant more intermediate collection points can be specified and results displayed on the map.

Simple sheet

The calculations and the calculation results can also be displayed in an excel file. This can be accessed by clicking on the excel icon in the Biomass conversion plant pane. The system will then start up excel on your computer and display the calculation sheets and results.

Note: there are more working sheets showing the different input variables and calculation of the main indicators quantified in the tool on costs and revenues, energy use and returns, calculation of GHG emissions and avoided.

	A	B	2	A	В	C	D	E
1	Simple o	hain calculation	1	0	utput simple chain calc	ulation		
2	VODA		2					
2	4004		3		Deve deve de la constante			
4	Vortion	2 nov 16	4		Case description aw	and miscanthus, variant: 100		
*	Version	2-104-10	6		Biomass chain name	bioenergy		
2	Interduction		7		bioind35 chain nume	biochergy		
	introduction			To	tal throughput.			
/			0	Ito	n dm]:			
		This excel-file performs a simple calculation of the economic, energy and GHG	10		from sources	30.032		
		effects of a biomass value chain specificly designed in the LocaGIStics tool.	1	1	india sources	00.002		
		This excel-file itself contains part of the data that are needed for the calculations	15	Re	evenues and costs:			
		(see sheet 'Input basic'). Another part of the required basic data is transfered	4.	2 lei	Irol			
		from the LocaGIStics tool to the sheet 'Input basic' (biomass data and data on	1.	4	electricity revenues	6 760 849		
		the first transport means). The set-up of the network (see sheet 'Input chain') is	15	5	heat revenues	959.458		total revenues
		generated based on the actual design in the LocaGIStics tool: the chosen	16	6				
		biomass types are always delivered at an intermediate collection point (biomass	17	7	purchase costs	1.351.441		
		vards), however, this can be the same location as the conversion site: the	18	8	storage costs	60.815		
		biomass is pre-treated at the biomass yard and then shipped on demand to a	19	9	transport costs	87.010		
8		biomass conversion site	20	0	loading/unloading costs	39.042		
9			2	1	pretreatment costs	2.298.201		
10	Sheets used:		2	2	drying costs	625.000		total costs
11	Input:		24	4	CONVERSION COSts	023.000		nrofit
12	mpor.	Input basis (content partly standard, partly constrated from LocaCIStics)	2	5				pron
12		Input obsic (content party standard, party generated from Locadiotics)	26	s Fr	ergy returns and use.			
13	Colordation of a	input chain (content generated nom Locaoistics)	2	7 IG.	n			
14	Calculation of r	Only Contra	21	R	electricity returns	126 112		
10	-	Calc Costs	25	9	heat returns	302 668		total energy returns
10		Calc energy	- 30	0				37
17		Calc GHG	3	1	energy used for purchase	15.016		
18	Output		33	2	energy used for storage	0		
19		Global results (summary of calculation results)	H	++	H Introduction Input basic Input cha	n / Calc Costs / Calc energy	Cak	GHG Global results
20								
21	Legenda							
22	Bx = biomass b	<pre>/pe; Fx = Form; L= loading/unloading; P=pretreatment; C=conversion</pre>						
23	IC= intermediat	e collection point; PP = power plant						
71	EI-Eiold	tion (Innet basis (Innet chain (Cole Caster (Cole anneas) (Cole CHC) (Clabel case be	Te					
	Introduc	cuon imput basic imput cham calc costs. Calc energy Calc GHG Global results	2					

S2Biom Too	ols for Bio	mass Cha	ins					
Home General data 🕤 Biomass chain (data 🕤 🛛 Tools 🕤	Strategies, roadmaps & im	plementation plan	s 💌				
Tools / LocaGIStics								
Countries Areas of interest	+	A A		Bioma	ss convei	rsion plai	nts	
France Burgundy	-			Name	Size (t	Amou	Financi	En
		THE STATES	-11	PP1	30,000	30,068	3,731,461	43
Cases	and my		Sec.	PP2	30,000	30,400	3,680,828	44
Burgundy straw and miscanthus	1200	mand		PP3	30,000	30,100	3,890,909	43
	1. 22.00	P.3101	3 11					
Variants	10 43	STEMU	man -	< Create				>
ci Energy Net GH	1.1			Creat	,			
3, 1,317,1 126,168 🗈 🗙 🖉 🔳			\diamond	Interm	ediate co	llection p	oints	
	12 6 18	P ter, I	e 231	Name	Amo	unt [Distance (
X	Sec. L. S			PP3_DC	1 30,1	00 4	429,656	× Ø
Create	191- 191		5					
Biomass types	C-C							
N. Availa Field - ICP -	and a			<				>
M 100 15 10 🖉 🗘	mar and	5	1 miles	Create	•			

This tool is the most complicated tool developed in the S2BIOM toolset in terms of functionalities, data integration, calculation upon user specifications.

7 Annexes

Annex 1 Overview of biomass categories included in the S2BIOM database for Europe

type_id	cat_id	subcat_is	category	subcategory	short_name	name
					Stemwood from final fellings	
					originating from nonconifer	
1111	11	111	Production from forests	Stemwood from final fellings & thinnings	trees	Final fellings from nonconifer trees
					Stemwood from final fellings	
1112	11	111	Production from forests	Stemwood from final fellings & thinnings	originating from conifer trees	Final fellings from conifer trees
					Stemwood from thinnings	
1112			Deadlastica from forests		originating from nonconifer	T h 's win and for an an and 'f a share a
1113	11	111	Production from forests	Stemwood from final fellings & thinnings	trees	Thinnings from nonconifer trees
					Stemwood from thinnings	
1114	11	111	Production from forests	Stemwood from final fellings & thinnings	originating from conifer trees	Thinnings from conifer trees
					Stemwood from final fellings	
1115	11	111	Due du etien fuene fenerate	Champion and from final fallings & this since	and thinnings broadleaf &	
1115	11	111	Production from forests	Stemwood from final fellings & thinnings	Coniferous trees	Stemwood from broadleaf & coniferous trees
				Stom and grown biomass from early	stem and crown biomass from	
1121	11	112	Production from forasts	thinning	broadloaf troop	Early thinnings from nonconifor troos
1121	11	112			Stom and crown biomass from	Early thinnings from honconner trees
				Stem and crown biomass from early	early thinnings originating from	
1122	11	112	Production from forests	thinnings	conifer trees	Farly thinnings from conifer trees
					Logging residues from final	
				Logging residues from final fellings &	fellings originating from	Logging residues from final fellings from
1211	12	121	Primary residues from forests	thinnings	nonconifer trees	nonconifer trees
					Logging residues from final	
				Logging residues from final fellings &	fellings originating from conifer	Logging residues from final fellings from conifer
1212	12	121	Primary residues from forests	thinnings	trees	trees
				Logging residues from final fellings &	Logging residues from thinnings	Logging residues from thinnings from
1213	12	121	Primary residues from forests	thinnings	from nonconifer trees	nonconifer trees
				Logging residues from final fellings &	Logging residues from thinnings	Logging residues from thinnings from conifer
1214	12	121	Primary residues from forests	thinnings	from conifer trees	trees

type_id	cat_id	subcat_is	category	subcategory	short_name	name
					Stumps from final fellings	
					originating from nonconifer	Stumps from final fellings from nonconifer
1221	12	122	Primary residues from forests	Stumps from final fellings & and thinnings	trees	trees
4000	10	400			Stumps from final fellings	
1222	12	122	Primary residues from forests	Stumps from final fellings & and thinnings	originating from conifer trees	Stumps from final fellings from conifer trees
2111	21	211	Primary production of		Biomass sorghum (Annual	Diamaga agenthum
2111	21	211	ngnocenulosic biomass crops	Energy grasses, annual & perennial crops	grasses)	Biomass sorgnum
2112	21	211	Primary production of	Energy graces appual & perophial crops	Missanthus (Doronnial grass)	Missophus
2112	21	211	Drimony production	Energy grasses, annual & perennial crops	wiscartinus (Perenniai grass)	Wiscalitius
2112	21	211	Primary production of	Energy grasses appual & perophial crops	Switchgross (Poroppial gross)	Switchgross
2115	21	211	Primary production of	Energy grasses, annual & perennial crops	Switchgrass (Ferenniai grass)	Switchgrass
2114	21	211	lignocellulosic hiomass crons	Energy grasses annual & nerennial crons	Giant reed (Perennial grass)	Giant reed
2114			Primary production of	Energy Brusses, united & perennial crops		
2115	21	211	lignocellulosic biomass crops	Energy grasses, annual & perennial crops	Cardoon (Perennial crop)	Cardoon
			Primary production of		Reed Canary Grass (Perennial	
2116	21	211	lignocellulosic biomass crops	Energy grasses, annual & perennial crops	grass)	Reed Canary Grass
			Primary production of			
2121	21	212	lignocellulosic biomass crops	Short rotation coppice	SRC Willow	SRC Willow
			Primary production of			
2122	21	212	lignocellulosic biomass crops	Short rotation coppice	SRC Poplar	SRC Poplar
			Primary production of			
2123	21	212	lignocellulosic biomass crops	Short rotation coppice	Other SRC	Other SRC
2211	22	221	Agricultural residues	Straw/stubbles	Rice straw	Rice straw
2212	22	221	Agricultural residues	Straw/stubbles	Cereals straw	Cereals straw
2213	22	221	Agricultural residues	Straw/stubbles	Oil seed rape straw	Oil seed rape straw
2214	22	221	Agricultural residues	Straw/stubbles	Maize stover	Maize stover
2215	22	221	Agricultural residues	Straw/stubbles	Sugarbeet leaves	Sugarbeet leaves
2216	22	221	Agricultural residues	Straw/stubbles	Sunflower straw	Sunflower straw

type_id	cat_id	subcat_is	category	subcategory	short_name	name
2221	22	222	Agricultural residues	Woody prunning & orchards residues	Residues from vineyards	Residues from vineyards
					Residues from fruit tree	
					plantations (apples, pears and	
2222	22	222	Agricultural residues	Woody prunning & orchards residues	soft fruit)	Residues from fruit tree plantations
					Residues from olives tree	
2223	22	222	Agricultural residues	Woody prunning & orchards residues	plantations	Residues from olives tree plantations
					Residues from citrus tree	
2224	22	222	Agricultural residues	Woody prunning & orchards residues	plantations	Residues from citrus tree plantations
2225	22	222	Agricultural residues	Woody prunning & orchards residues	Residues from nuts plantations	Residues from nuts plantations
					Unused grassland cuttings	
					(abandoned grassland,	
					managed grasslands not used	
2311	23	231	Grassland	Grassland	for feed)	Unused grassland cuttings
					Grassy biomass from landscape	
				Biomass from other areas under	maintenance (recreational and	
3111	3	311	Other land use	landscape maintenance	nature protection areas, dykes)	Landscape care (grassy)
					Woody biomass from	
				Biomass from other areas under	landscape maintenance	
3112	3	311	Other land use	landscape maintenance	(landscape elements)	Landscape care (woody)
					Grassy biomass from road side	
3121	3	312	Other land use	Biomass from road side verges	verges	Road side verges (grassy)
					Woody biomass from road side	
3122	3	312	Other land use	Biomass from road side verges	verges	Road side verges (woody)
			Secondary residues from		Sawdust from sawmills from	
4111	41	411	, wood industries	Saw mill residues	conifers	Sawdust (conifers)
			Secondary residues from		Sawdust from sawmills from	
4112	41	411	wood industries	Saw mill residues	nonconifers	Sawdust (nonconifers)
3121 3122 4111 4112	3 3 41 41	312 312 411 411	Other land use Other land use Secondary residues from wood industries Secondary residues from wood industries	Biomass from road side verges Biomass from road side verges Saw mill residues Saw mill residues	Grassy biomass from road side verges Woody biomass from road side verges Sawdust from sawmills from conifers Sawdust from sawmills from nonconifers	Road side verges (grassy) Road side verges (woody) Sawdust (conifers) Sawdust (nonconifers)

type_id	cat_id	subcat_is	category	subcategory	short_name	name
			Secondary residues from		Sawmill residues: excluding	
4113	41	411	wood industries	Saw mill residues	sawdust, conifers	Other residues (conifers)
			Secondary residues from		Sawmill residues: excluding	
4114	41	411	wood industries	Saw mill residues	sawdust, nonconifers	Other residues (nonconifers)
					Residues industries producing	
			Secondary residues from		semi finished wood based	Residues from industries producing semi
4121	41	412	wood industries	Other wood processing industry residues	panels	finished wood based panels
			Secondary residues from		Residues from further	
4122	41	412	wood industries	Other wood processing industry residues	woodprocessing	Residues from further woodprocessing
			Secondary residues from	Secondary residues from pulp and paper	Bark residues from pulp and	
4131	41	413	wood industries	industry	paper industry	Bark
			Secondary residues from	Secondary residues from pulp and paper		
4132	41	413	wood industries	industry	Black liquor	Black liquor
			Secondary residues of	Duran durate and an elder a former for all and		
4211	42	421	industry utilising agricultural	By-products and residues from food and		
4211	42	421	products		Officer by products and residues	Olive-stones
			secondary residues of	Puproducts and residues from food and	from food and fruit processing	
1212	12	//21	products	fruit processing industry	industry	Other food processing residues
4212	42	421	Secondary residues of			
			industry utilising agricultural	By-products and residues from food and		
4213	42	421	products	fruit processing industry	Rice husk	Rice husk
			Secondary residues of			
			industry utilising agricultural	By-products and residues from food and		
4214	42	421	products	fruit processing industry	Pressed grapes dregs	Pressed grapes dregs
			Secondary residues of			
			industry utilising agricultural	By-products and residues from food and		
4215	42	421	products	fruit processing industry	Cereal bran	Cereal bran

type_id	cat_id	subcat_is	category	subcategory	short_name	name
					Biowaste as part of integrally	
					collected municipal waste:	
					Biodegradable waste of not	
					separately collected municipal	
					waste (excluding textile and	
5111	51	511	Municipal waste	Biodegradable municipal waste	paper)	Biowaste unseparately collected
					Separately collected biowaste:	
					Biodegradable waste of	
					separately collected	
					municipal waste (excluding	
5112	51	511	Municipal waste	Biodegradable municipal waste	textile and paper)	Biowaste separately collected
					Hazardous post consumer	
5211	52	521	Waste from wood	Post consumer wood	wood	Hazardous post consumer wood
					Non hazardous post consumer	
5212	52	521	Waste from wood	Post consumer wood	wood	Non hazardous post consumer wood

