

Strategic Case Study: Methodology for measuring the economic development of biomass value chains, in West Region, Romania

Vlad Stanciu – Executive Director

Georgiana Birau – Biomass Technician

Summary:

Introduction

- Assessment of the existing and potential biomass, in the region
- Assignment of an economic value for each type of biomass
- Determination of mobility potential
- Developing Equations for logistic analysis in biomass value chains
- Conclusions

Introduction

Value Chains Integration in the Local Economy

Development of bio-based industries

= Growth of:

- Rural economy
- Quality of life in rural areas
- Non-agricultural activities
- Energy independence
- Significant contribution to the objectives of Europe 2020 Strategy

How:

- Encourage cooperation and association among actors in line with sustainable development principles (like fair trade)
- Support the pooling of actors into integrated supply chains
- Regional and trans-regional cooperation

Administrative and Natural background of the area - Western Region -

Administrative and Natural background of the area - Western Region -

land

Primary and secondary agriculture residues

Area (ha) x Specific biomass output (t/ha) = Potential (t)

Agricultural surface by use categories (ha)

		Arad	Caras-Severin	Hunedoara	Timis
	Occupied area	775,409	851,976	706,267	869,665
	Agriculture surface	510,624	397,276	280,377	698,638
	West Region	Arad	Caras-Severin	Hunedoara	Timis
Arable	1,090,197	349,856	127,226	79,615	533,500
Pastures	550,236	126,109	184,036	11,7566	122,525
Grassland	210,541	25,495	73,557	82,274	29,215
Vineyards and nurseries	8,573	3,577	768	-	4,228
Orchards and nurseries	27,368	5,587	11,689	922	9,170

Primary and secondary agriculture residues

Area (ha) x Specific biomass output(t/ha) = Potential (t)

Main crops and crops residues in West Region

(Culture	West Region
Wheat	ha	242,244
wheat	Production t/ha	4.01
	ha	288,660
Maize	Production t/ha	3.5
Parlov	ha	43,510
вапеу	Production t/ha	2.6
Sumflewer	ha	44,842
Sumower	Production t/ha	1.8
Sugar beet	ha	641
	Production t/ha	36.5

Corresponding quantity of secondary residues

	Grain : straw
Wheat	1:1.3
Maize	1:1.6
Barley	1:1
Sun Flower	1:3
Sugar Beet	1:1

Total Biomass Potential of Agriculture =3.2 mil. t

Wood residues

Facts:

- Easy to access by forestry roads
- Easy to process high density(beech, oak, sycamore, etc)
- > 5% to 10% of forest wood is residual (to be cleaned)
- ➤ 51,525-103,050 ha surfaces of residues
- => Up to 23,7 mil. m³ residual wood (about 14 mill t)

Energy Crops

- Popular in Timis and Arad counties, due to rich, fertile lands
- > 500 ha planted with energetic willow cultures
- 100 ha planted with Miscanthus
- One hectare of willow/miscanthus produces:
 - > 20 tons with 8% humidity (natural ventilation in the sun)

> 35 tons with 35% - 40% humidity

Willow seedlings

Energetic potential of biomass use

Type of biomass	Tons of residues produced yearly (†)	Theoretical Energetic Potential (MWh/t)	Technical Energetic Potential (MWh/t)	Achievable Energetic Potential_2020 (MWh/t)
Wheat straws	1,262,817	5,139,669	2,569,835	2,569,835
Maize residues	1,616,496	8,858,398	4,429,199	4,429,199
Barley straws	113,126	452,504	226,252	226,252
Sun flower	242,146	1,063,024	531,512	531,512
Sugar beet	23,396	21,005		
Wood residues	1,400,000	6,020,000	3,010,000	3,010,000
Energetic willow	10,000	57	57	57
Miscanthus	2,000	8.8	8.8	8.8
Total Energy	Potential (MWh)	21,661,874	10,830,937	10,830,937

Support in the development of a sustainable concept for harnessing renewable energies in Timis County

=> 11 TWh Achievable Energetic Potential of existing biomass

ROSENC

The Romanian Sustainble

Assessment of energy potential of the unused lands

Assignment of an economic value for each type of biomass

- Market analysis for each type of biomass
- Average economic value resulted from the analysis

	elling costs for each type of biomass(*by the side of the road)			
Type of residue		Costs €/ kg	Costs €/t	
Agricultural waste	Wheat, hay	0.1- 0.2	100-200	
	Maize	0.13	130	
Forostry wastos	Sawdust	0.1-0.33	100-330	
rolesily wastes	Wood residues	0.05	50	
Enorgatic crops	Energetic willow	0.03	30	
Energenc crops	Mischantus	0.008	8	

The Romanian Sus

Determination of the mobility potential

- Economic value of the logistic and processes components
 - The logistic components:
 - Transport 1 (from the source, to the processer)
 - Storage
 - Transport 2 (from the processer, to the user)
 - The process components :
 - Pelleting machinery
 - Briquetting machinery
 - Workers
 - Energy usage of the pelleting/briquetting machineries

Pelleting line : A. Raw material delivery; 1. Conveyor; 2. Sorter; 3. Hammer mill; 4. Drying installation; 5. Drying silo; 6. Conditioning device; 7. Ripening container; 8. Mold press; 9. Cooler; 10. Sieve; 11. Pellets silo; B. Transport to the final user Developing the Equations for logistic analysis of the biomass value chains

Equation for logistic analysis:

$$\mathsf{P}\left[\frac{\epsilon}{t}\right] = r\left[\frac{\epsilon}{t}\right] + t1\left[\frac{\epsilon}{t*km}\right] + p\left[\frac{\epsilon}{t}\right] + t2\left[\frac{\epsilon}{t*km}\right]$$

P= pellets/briquettes final costs r= raw material costs t1,2= transport costs p= processing costs

Legend

County border

Area 2

Area 4

Possible developing areas for biomass Area 1 (Best suited) ROSENC

Conclusion

- 21.5 TWh/Year wasted potential
- There is supply of raw biomass and energy demand, but very little connection between them
- Drafting a business plan in biomass = a lot of guess work = NOT sustainable
- Løck of cooperation and association among actors

Possible solutions:

- Integration of supply chains
- Accurate mapping of actors
- Equitable distribution of added value within the supply chain

"Methodology for determining the economic development of biomass value chains, for West Region of Romania"

Strategic Case Study: Methodology for determining the economic development of biomass value chains, for West Region of Romania

Thank you for your interest!

Georgiana Birau – Biomass Technician

Tel: +40 748 204 315

Email: georgiana.birau@rosenc.ro

Web: <u>www.rosenc.ro</u>