

Session 2: Estimation of biomass availability for lignocellulosic biomass

Assessment of the cropping potential and the development of dedicated crops database

Presenters

Jacqueline Ramírez Almeyda, Berien Elbersen, Igor Staritsky, Nicola Di Virgilio, Andrea Monti

GENINGEN UR

S2Biom summer school, Athens, Greece, 17-20 May, 2016

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Outline

- Overview: main objectives
- Approach and data used
- Crop yield estimation for whole of Europe
- Land suitability for dedicated cropping
- Land availability for dedicated cropping
- Conclusions

S2Biom Project

Aim of the project:

To support the sustainable delivery of **non-food lignocellulosic biomass** at local, regional and pan European level through developing **strategies**, and **roadmaps** that will be informed by a **toolset** with updated harmonized datasets

Main objectives:

- to estimate the DM biomass yield of perennials crops in whole EU
- to identify the most suitable crop mix for every location in Europe (Nuts 3 level)
- to make an estimate of the dedicated biomass cropping potential in Europe

BEFORE

Erosion during strong storms in wet season (intense rainfall washing top soil) Naked soil not sustainable management Depleted and unfertile soil with desertification process Carbon mostly flowing to towards the air (low photosynthesis) Low fauna activity because ecological constraints and equilibrium breakage No social benefit for anybody (farmers, workers, community, etc.) Diesel is imported to produce power in this island with extrenly high tariff (0.50 \$/wkh). Coral reef impacted

AFTER

Reduced erosion and higher rainfall harvest in watershed Higher green covers and Sustainable Landscape management Organic matter and soil conservation (improvement of topsoil) Carbon sequestration (less CO2 in the air) because of higher productivity each year Higher biodiversity (soil microbial and fauna activity, mites, birds, etc.) Employment for farmers, workers, power station and lower tariff Local cheaper renewable energy (less import dependence and impacts on Oil in Mexican Guff) No impact in coral reef (beach is few miles from here)

The modelled crops are

Annual and perennial crops

Miscanthus

Giant reed

Cardoon

Switchgrass

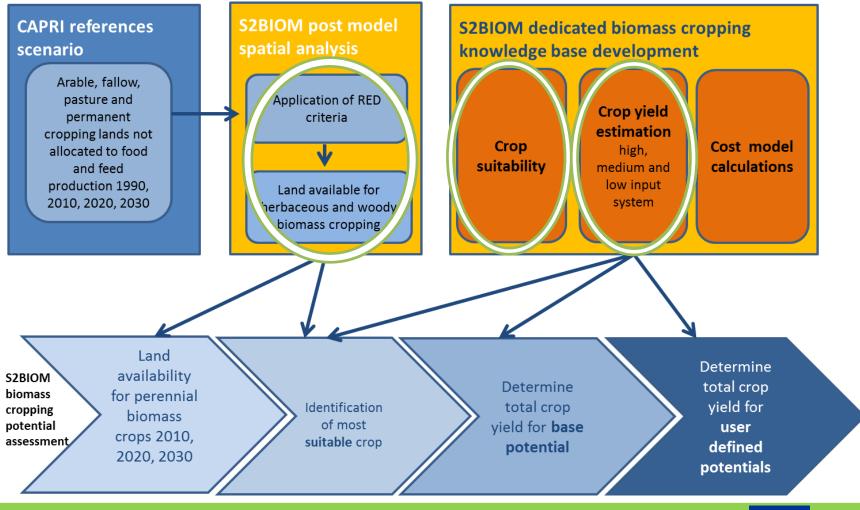
Reed canary grass

Sorghum

SRC

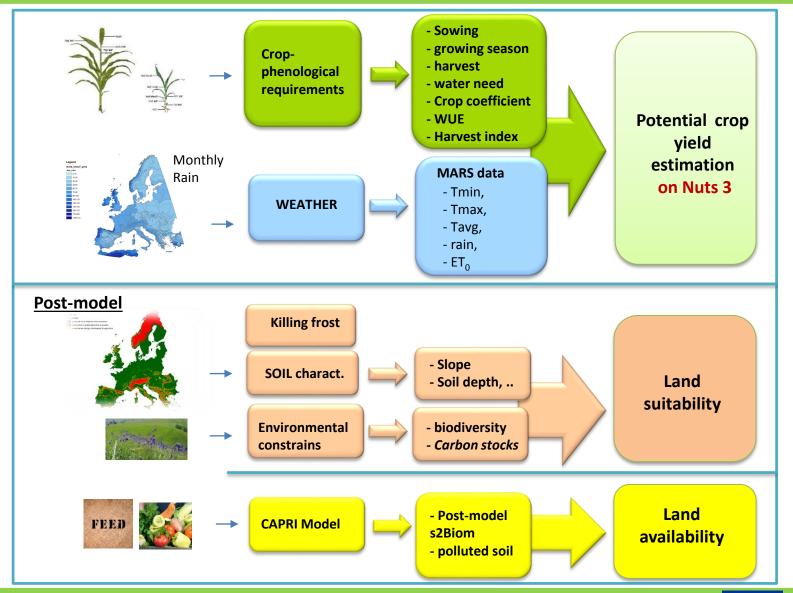
Poplar

Willow


Eucalyptus

Approach

Integration of CAPRI land availability for dedicated biomass crops with S2BIOM yield and cost level assessments to estimate herbaceous and woody biomass cropping potentials



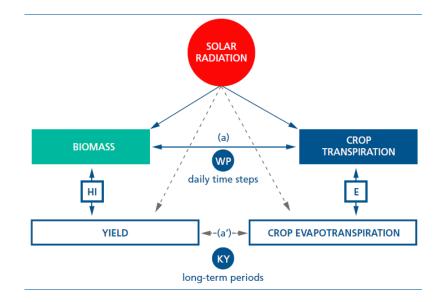
Crop yield estimation for whole of Europe



Crop yield estimation for whole of Europe

Crop yield estimation

Methodology

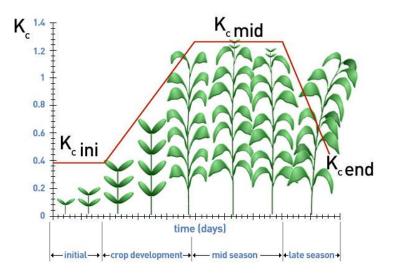

• The biomass yield depends on very site-specific conditions such as soil, temperature and water availability. A direct relation exists between biomass production and water consumed through transpiration.

Maintaining the original concept of a direct link between crop water use and crop yield, in this study we use the *AquaCrop Model* evolved from the FAO.

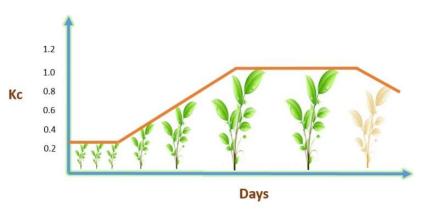
 $\mathsf{B}=\mathsf{W}\mathsf{P}\bullet\Sigma\mathsf{T}\mathsf{r}$

For all crops, only part of the biomass produced is partitioned to the harvested biomass parts to give yield (Y) and the below ground plant part. Hence, the ratio of yield to biomass is known as harvest index (HI).

 $Y = HI \bullet B$


- **B**, biomass produced cumulatively (kg per m²)
- **Tr**, crop transpiration(either mm or m³ per unit surface) with the summation over the time period in witch the biomass is produced
- WP is the water productivity parameter (either kg of biomass per m²) and per mm, or kg of biomass per m³ of water transpired)
- Y, yield
- HI, Harvest index

Crops specific parameters

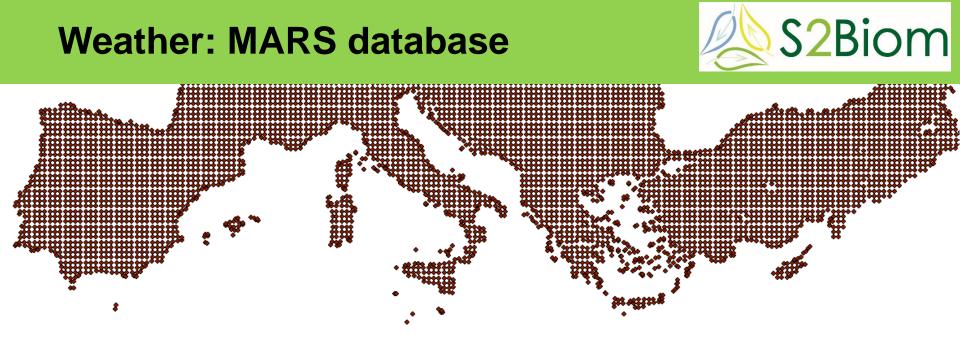

Length growing season (Lgs)

Water Use Efficiency (WUE)

Crop coefficient (Kc)

Harvest index (HI)

Cutting miscanthus



Agronomic table

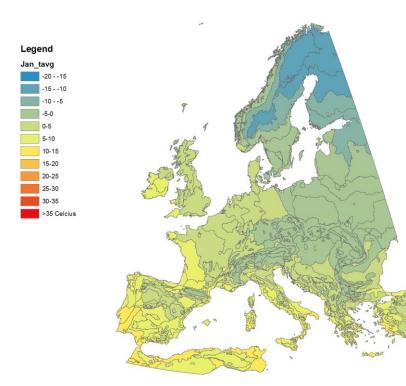
Factors	Miscanthus	Switchgrass	Giant Reed	Reed canary grass	Cardoon	Sweet Sorghum	Willow	Poplar	Eucalyptus
Latin name		Panicum virgatum L.			Cynara cardunculus L.	Sorghum bicolour L. Moench	Salix spp.	Populus spp.	Eucalyptus spp.
Photosynthetic system	C4	C4	C3	C3	C3	C4	C3	C3	C3
Propagation	rhizomes, micropropagated plants	seed	rhizomes, micropropagated plants	seed	seed	seed	cuttings	cuttings	Cuttings
Harvest period	Annually fall or spring	Annually fall or spring	Annually fall or spring	Autumn / early spring	Late summer	Annually fall	harvested on 3–4 years rotation Winter	harvested on 3–7 years rotation Winter	harvested on 6–15 years rotation Winter
Growing minimum (°C)	10	10	10	7	5	10	5	7,5	10
Growing maximum (°C)	40	35	35	30	35	40	30	30	35
Water requirement (mm)	High	Medium	Low	High	Low	Medium	High	Medium	Medium
Fertilizer input (N) (kg ha/N/year)	50 - 100	50 - 100	50 - 100	50 - 140	100 - 150	100 - 200	80 - 150	112 - 450	60 - 125
Dry biomass (t dm/ha)	12 - 25	8 - 15	12 - 30	5 - 20	4 - 8	15 - 25	10 - 30	7 - 28	10 - 26
Tolerance to dry conditions	High	High	high	Medium	high	high	Low	Medium	Medium

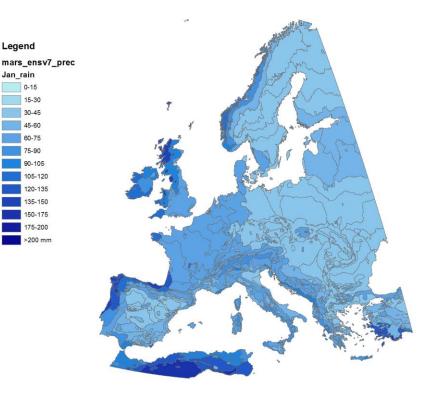
Climate data are available from the JRC-MARS data base on a 25x25 km grid.

MARS-weather interpolated data have been collected, <u>representing the</u> <u>long term average for each day of the year</u> for the following variables:

- tmin minimum day temperature
- tmax maximum day temperature
- tavg average day temperature
- rain daily rainfall
- ETO daily evapotranspiration for reference crop

Reference evapotranspiration (ETO)

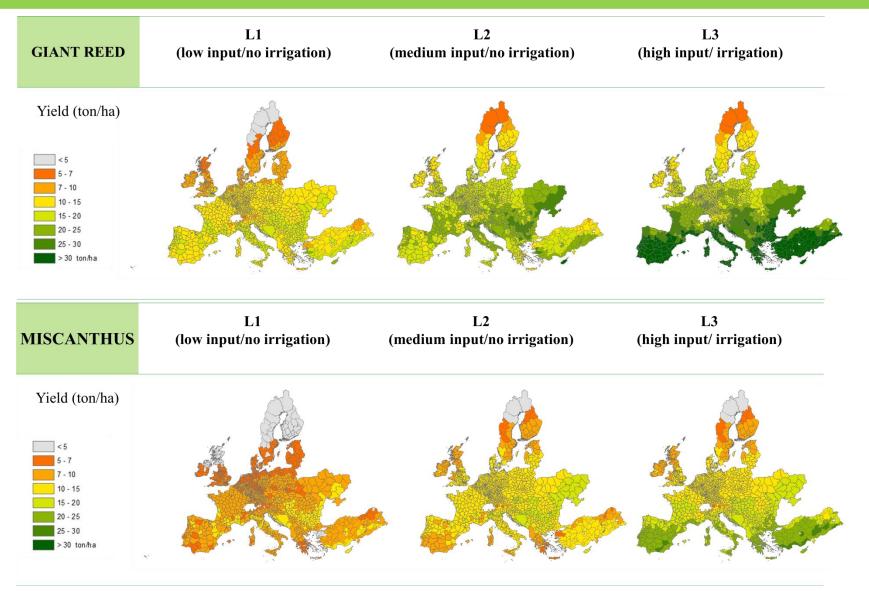

for every location in Europe was determined from the Penman-Monteith equation recommended by FAO.


Climatic characteristic

Monthly Average Temperature (C°)

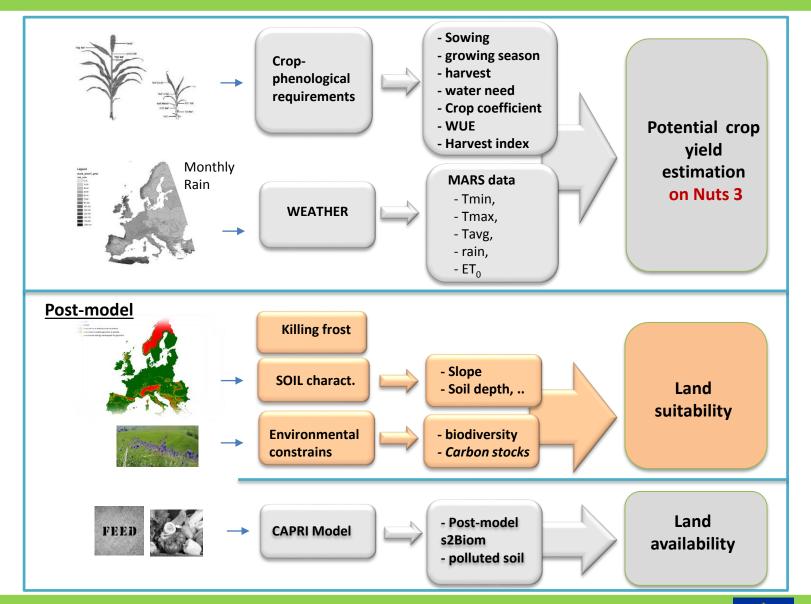
Monthly Rain (mm)

http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST

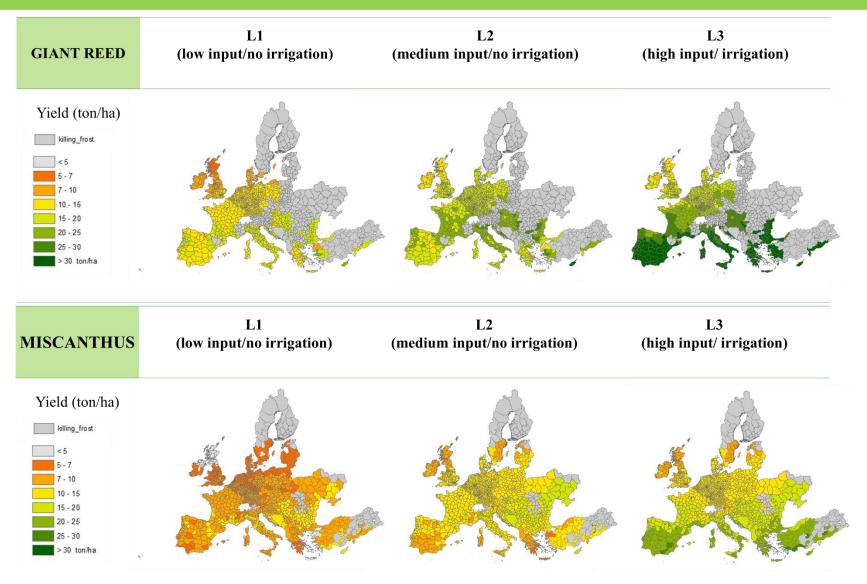

Crops yield estimation for whole EU

Level	description
L1	low input, rain fed
L2	medium input, rain fed
L3	high input, irrigation applied where needed

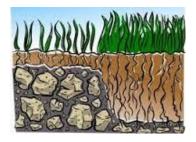
Results: crop yield estimation (vers 1.3)


Land suitability for dedicated crops

Land suitability



Results: crop yield estimation + killing frost (vers 1.4)



Soil characteristic

S2Biom

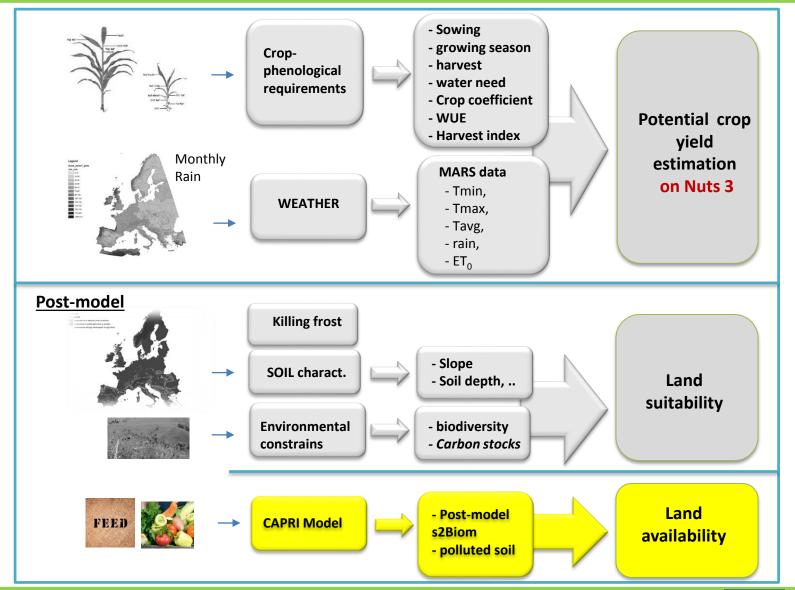
Criteria & classification	Misc.	Switch.	Giant r.	Card.	RCG	Willow	Poplar	Eucalyp.
Slope								
0-8% slope	S	S	S	S	S	S	S	S
8%-16% slope	MS	MS	MS	MS	MS	LS	LS	LS
>16% slope	NS	LS	NS	LS	NS	NS	NS	NS
Texture								
Sand (coarse)	MS	MS	MS	LS	PS	LS	MS	MS
Loam (medium-medium fine)	VS	VS	VS	VS	VS	VS	VS	VS
Clay (fine)	LS	MS	S	MS	MS	MS	LS	MS
Heavy clay (very fine)	PS	NS	MS	NS	PS	NS	NS	MS
Peat (no mineral texture)	NS	NS	NS	NS	NS	NS	NS	NS
Soil depth								
Shallow (< 40 cm)	NS	NS	NS	NS	NS	NS	NS	NS
Moderate (40 - 80 cm)	PS /MS	PS /MS	PS / MS	PS/MS	LS /MS	PS / MS	PS / MS	PS \/MS
Deep (80 - 120 cm)	S	S	MS / S	MS / S	S	MS / S	MS ∖/S	MS / S
Very Deep (> 120 cm)	VS	VS	VS	VS	VS	VS	VS	VS
pH soil								
0 - 4	NS	NS	NS	NS	NS	NS	NS	NS
4 - 5	LS	LS	LS	PS	PS	PS	PS	PS
5 - 6	S	MS	MS	MS	S	MS	MS	MS
6 - 7	VS	VS	VS	VS	VS	VS	VS	VS
7 - 8	MS	LS	S	S	MS	S	S	S

Environmental Constrains

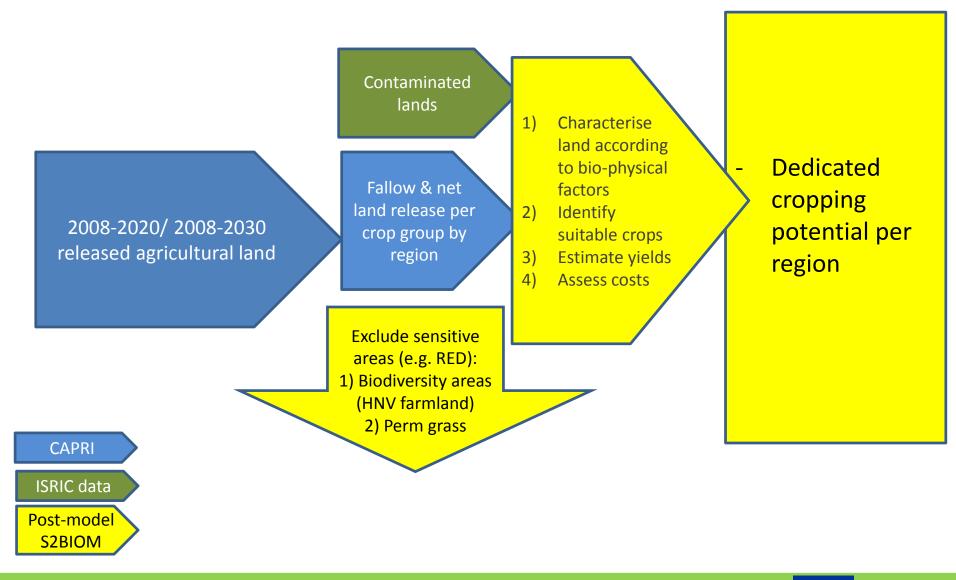
- Nature 2000
- Biodiversity
- Carbon stock

S: Suitable/MS: medium suitable/LS: Low Suitable/NS: Not suitable (poorly suitable: PS, very suitable: VS)

19/05/2016


Land availability for dedicated crops

Land availability



Land availability for dedicated crops

CONCLUSION

output of this assessment are:

- a. Dedicated cropping database for Europe providing information per crop per region (nuts 3) on
 - i. Yield (water limited and maximum yield)
 - ii. Water use
 - iii. Cost in different management systems
 - iv. Estimated land area available per region available for dedicated cropping in 2020 and 2030
- b. Total dedicated biomass cropping potential per region

limitations of our approach:

- a. Crop yield simulation is challenging because
 - i. Lack of breeding experience with all these novel crops
 - ii. Many different cultivars per crop
 - iii. Lack of crop phenological information for these novel crops
 - iv. Now we take main crop factors and combine with detailed climate data. But soil and management factors can make large difference
- b. Identifying land available can only be done through statistical information and modelling. But whether the mobilisation of dedicated cropping will take place demands omn many other factors that cannot be captured in model and statistics.

Thank you for your attention !!

Jacqueline.ramirez2@unibo.it

ALMA MATER STUDIORUM Università di Bologna

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°608622.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

S2biom consortium

